Prof. A. Suciu

PRACTICE QUIZ 4

1. Consider the independent vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}.$$

Find an orthonormal basis $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ for the subspace of \mathbb{R}^4 which has $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ as a basis.

2. Let
$$\mathbf{a}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{a}_2 = \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \quad \mathbf{a}_3 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}$$

(a) Find an orthonormal basis for the subspace of \mathbb{R}^4 which has $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ as a basis.

- (b) Use part (a) to find the *QR*-factorization of the matrix $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$.
- **3.** Find the *QR*-factorization of the matrix $A = \begin{bmatrix} 6 & 2 \\ 3 & -6 \\ 2 & 3 \end{bmatrix}$.
- **4.** Apply the Gram-Schmidt process to the vectors $\mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, and write the result in the form $A = Q \cdot R$.
- 5. Find the matrix of the orthogonal projection onto the line in \mathbb{R}^5 spanned by the vector $\vec{v} = \begin{bmatrix} 2\\3\\1 \end{bmatrix}$.
- **6.** Let $A = \begin{bmatrix} -3 & 4 \\ 9 & -12 \end{bmatrix}$.
 - (a) Find a basis for ker A.
 - (b) Find a basis for $(\ker A)^{\perp}$.
 - (c) Find a basis for ker A^{\top} .
 - (d) Find a basis for $(\ker A^{\top})^{\perp}$.

7. Find all pairs of orthonormal vectors of the form $\vec{v}_1 = \begin{bmatrix} a \\ a \\ a \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} b \\ 0 \\ c \end{bmatrix}$

- 8. Let A be an $n \times n$ matrix. Is the matrix AA^{\top} symmetric? Justify your answer.
- **9.** Let A be an $n \times n$ matrix. Is the matrix $A A^{\top}$ symmetric? Justify your answer.
- **10.** Let A be an $n \times n$ matrix, and let B be a symmetric matrix. Is the matrix $A^{\top}BA$ symmetric? Justify your answer.

Practice Quiz 4

11. Which of the following statements are true, for all $n \times n$ orthogonal matrices A?

- (a) rref $A = I_n$ (b) ker $A = \{\vec{0}\}$ (c) im $A = \{\vec{0}\}$ (d) $A \cdot A^{\top} = A^{\top} \cdot A$ (e) $A^{-1} = A$ (f) $(A^{\top})^{-1} = A$ **12.** Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -1 \\ 5 \\ 3 \end{bmatrix}$.
 - (a) Find the least squares solution \vec{x}^* of the inconsistent system $A \cdot \vec{x} = \vec{b}$.
 - (b) Find the 3×3 matrix associated with the projection of \mathbb{R}^3 onto the subspace im A.
 - (c) Find the projection of the vector \vec{b} onto im A.
- 13. Find the least squares solution of the inconsistent system $A\vec{x} = \vec{b}$ for

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$$

Determine the error $||\vec{b} - A\vec{x}||$.

14. Find the least squares solution \vec{x}^* of the inconsistent system $A\vec{x} = \vec{b}$ for

$$A = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 1 & 1 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 1\\ 0\\ 2 \end{bmatrix}.$$

Determine the error $||\vec{b} - A\vec{x}||$. **15.** Let $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}$.

(a) Find the least squares solution $\left[\frac{\overline{x}}{\overline{y}}\right]$ of the inconsistent system $A \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{b}$.

- (b) Use your answer to part (b) to find the projection of **b** onto im A.
- **16.** A company gathers the following data:

Year	1993	1994	1995	1996	1997
Annual Sales	0.8	2	3	4.2	5
(in millions of dollars)					

Represent the years $1993, \ldots, 1997$ as -2, -1, 0, 1, 2, respectively, and let x denote the year. Let y denote the annual sales (in millions of dollars).

- (a) Find the least squares line relating x and y.
- (b) Use the equation obtained in part (a) to estimate the annual sales for the year 1999.
- **17.** Find the equation of the least-squares line that fits the following data points:

Sketch the resulting line. What is the predicted value of y at x = 6, based on this model?