1. Consider the independent vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] .
$$

Find an orthonormal basis $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ for the subspace of \mathbb{R}^{4} which has $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ as a basis.
2. Let $\quad \mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right], \quad \mathbf{a}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$.
(a) Find an orthonormal basis for the subspace of \mathbb{R}^{4} which has $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ as a basis.
(b) Use part (a) to find the $Q R$-factorization of the matrix $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$.
3. Find the $Q R$-factorization of the matrix $A=\left[\begin{array}{cc}6 & 2 \\ 3 & -6 \\ 2 & 3\end{array}\right]$.
4. Apply the Gram-Schmidt process to the vectors $\mathbf{a}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, and write the result in the form $A=Q \cdot R$.
5. Find the matrix of the orthogonal projection onto the line in \mathbb{R}^{5} spanned by the vector $\vec{v}=$
6. Let $A=\left[\begin{array}{rr}-3 & 4 \\ 9 & -12\end{array}\right]$.
(a) Find a basis for $\operatorname{ker} A$.
(b) Find a basis for $(\operatorname{ker} A)^{\perp}$.
(c) Find a basis for $\operatorname{ker} A^{\top}$.
(d) Find a basis for $\left(\operatorname{ker} A^{\top}\right)^{\perp}$.
7. Find all pairs of orthonormal vectors of the form $\quad \vec{v}_{1}=\left[\begin{array}{l}a \\ a \\ a\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}b \\ 0 \\ c\end{array}\right]$
8. Let A be an $n \times n$ matrix. Is the matrix $A A^{\top}$ symmetric? Justify your answer.
9. Let A be an $n \times n$ matrix. Is the matrix $A-A^{\top}$ symmetric? Justify your answer.
10. Let A be an $n \times n$ matrix, and let B be a symmetric matrix. Is the matrix $A^{\top} B A$ symmetric? Justify your answer.
11. Which of the following statements are true, for all $n \times n$ orthogonal matrices A ?
(a) $\operatorname{rref} A=I_{n}$
(b) $\operatorname{ker} A=\{\overrightarrow{0}\}$
(c) $\operatorname{im} A=\{\overrightarrow{0}\}$
(d) $A \cdot A^{\top}=A^{\top} \cdot A$
(e) $A^{-1}=A$
(f) $\left(A^{\top}\right)^{-1}=A$
12. Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}-1 \\ 5 \\ 3\end{array}\right]$.
(a) Find the least squares solution \vec{x}^{*} of the inconsistent system $A \cdot \vec{x}=\vec{b}$.
(b) Find the 3×3 matrix associated with the projection of \mathbb{R}^{3} onto the subspace im A.
(c) Find the projection of the vector \vec{b} onto im A.
13. Find the least squares solution of the inconsistent system $A \vec{x}=\vec{b}$ for

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Determine the error $\|\vec{b}-A \vec{x}\|$.
14. Find the least squares solution \vec{x}^{*} of the inconsistent system $A \vec{x}=\vec{b}$ for

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

Determine the error $\|\vec{b}-A \vec{x}\|$.
15. Let $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}5 \\ 1 \\ 2\end{array}\right]$.
(a) Find the least squares solution $\left[\begin{array}{l}\bar{x} \\ \bar{y}\end{array}\right]$ of the inconsistent system $A \cdot\left[\begin{array}{l}x \\ y\end{array}\right]=\mathbf{b}$.
(b) Use your answer to part (b) to find the projection of \mathbf{b} onto im A.
16. A company gathers the following data:

Year	1993	1994	1995	1996	1997
Annual Sales (in millions of dollars)	0.8	2	3	4.2	5

Represent the years $1993, \ldots, 1997$ as $-2,-1,0,1,2$, respectively, and let x denote the year. Let y denote the annual sales (in millions of dollars).
(a) Find the least squares line relating x and y.
(b) Use the equation obtained in part (a) to estimate the annual sales for the year 1999.
17. Find the equation of the least-squares line that fits the following data points:

x	1	2	4	5
y	0	1	2	3

Sketch the resulting line. What is the predicted value of y at $x=6$, based on this model?

