Sample Questions for Quiz 3

1. Let $A=\left[\begin{array}{cccc}2 & 1 & 1 & 0 \\ 4 & 2 & 2 & 0 \\ -6 & -3 & 0 & 1 \\ 2 & 1 & -2 & 0\end{array}\right]$.
(a) Find a basis for im A.
(b) Find a basis for $\operatorname{ker} A$.
(c) Find rank A.
2. Let $A=\left[\begin{array}{rrrrr}1 & 2 & 3 & 4 & 5 \\ -1 & 0 & 1 & 2 & 3 \\ 2 & 3 & 0 & 5 & 8\end{array}\right]$.
(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) Find the rank and the nullity of A.
3. Let $A=\left[\begin{array}{ccc}1 & 3 & 4 \\ 4 & 5 & 2 \\ -1 & 3 & 8\end{array}\right]$.
(a) Determine whether the column vectors of A are dependent or independent. If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Find $\operatorname{ker} A$ and $\operatorname{im} A$.
(c) Does the equation $A \cdot \vec{x}=\vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^{3} ? Explain your answer.
4. Are the following vectors independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

$$
\vec{v}_{1}=\left[\begin{array}{l}
2 \\
2 \\
6
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
-5 \\
7 \\
-3
\end{array}\right]
$$

5. Let $A=\left[\begin{array}{lllll}0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$.
(a) Find a basis for im A.
(b) Find a basis for $\operatorname{ker} A$.
(c) Compute: $\operatorname{dim}(\operatorname{im} A), \operatorname{dim}(\operatorname{ker} A), \operatorname{rank} A$.
6. Consider the folowing four vectors in \mathbb{R}^{4}.

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
0 \\
3
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
3
\end{array}\right], \quad \vec{v}_{4}=\left[\begin{array}{l}
2 \\
1 \\
7 \\
4
\end{array}\right] .
$$

Also let A be the 4×4 matrix with columns $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$.
(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Do the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ form a basis for \mathbb{R}^{4} ? Explain your answer.
(c) Does the equation $A \cdot \vec{x}=\overrightarrow{0}$ only have the solution $\vec{x}=\overrightarrow{0}$, or does it have other solutions? Explain your answer.
(d) Does the equation $A \cdot \vec{x}=\vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^{4} ? Explain your answer.
7. Let $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ 2 & -5 & -1 \\ -1 & 4 & 5\end{array}\right]$.
(a) Determine whether the column vectors of A are dependent or independent. If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Does the equation $A \cdot \vec{x}=\overrightarrow{0}$ only have the solution $\vec{x}=\overrightarrow{0}$, or does it have other solutions? Explain your answer.
(c) Does the equation $A \cdot \vec{x}=\vec{b}$ have a solution for every choice of \vec{b} in \mathbb{R}^{3} ? Explain your answer.
8. Consider the vectors $\quad \vec{v}_{1}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$.
(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Write the vector $\vec{b}=\left[\begin{array}{r}1 \\ -7 \\ 5\end{array}\right]$ as a linear combination of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
9. Find a basis of the subspace of \mathbb{R}^{4} defined by the equation $x_{1}+3 x_{2}-5 x_{3}+2 x_{4}=0$.
10. 10 points Let V be the subspace of \mathbb{R}^{3} defined by the equation $x_{1}+2 x_{2}-5 x_{3}=0$.
(a) Find a basis for V.
(b) Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{ker} T=\{\overrightarrow{0}\}$ and $\operatorname{im} T=V$. Describe T by its matrix A.
11. Let V be the subspace of \mathbb{R}^{3} defined by the equation $2 x_{1}-7 x_{2}+x_{3}=0$. Find a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{ker} T=\{\overrightarrow{0}\}$ and $\operatorname{im} T=V$. Describe T by its matrix A.
12. In each of the following, a subset S of \mathbb{R}^{3} is given. Circle one answer:
(a) $S=\{(t, 2 t, 3 t) \mid t$ is a real number $\}$
S is closed under addition: YES NO MAYBE
S is closed under scalar multiplication: YES NO MAYBE
S is a vector subspace of V : YES NO MAYBE
(b) $S=\{(t, 2 t, 3 t) \mid t$ is a positive real number $\}$
S is closed under addition: YES NO MAYBE
S is closed under scalar multiplication: YES NO MAYBE
S is a vector subspace of $V: \quad$ YES NO MAYBE
(c) $S=\{(t, 2 t, 3 t) \mid t$ is an integer $\}$
S is closed under addition: YES NO MAYBE
S is closed under scalar multiplication: YES NO MAYBE
S is a vector subspace of $V: \quad$ YES NO MAYBE
(d) $S=\{(t+1,2 t, 3 t-1) \mid t$ is a real number $\}$
S is closed under addition: YES NO MAYBE
S is closed under scalar multiplication: YES NO MAYBE
S is a vector subspace of $V: \quad$ YES NO MAYBE
13. In each of the following, a subset V of \mathbb{R}^{2} is given. Circle one answer:
(a) $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x-2 y=6\right\}$
(b) $V=\left\{\left[\begin{array}{l|l}x \\ y\end{array}\right] \left\lvert\, \begin{array}{c}x-2 y=0 \\ x, y \text { integers }\end{array}\right.\right\}$
(c) $V=\left\{\left.\left[\begin{array}{l}x \\ y\end{array}\right] \right\rvert\, x y \geq 0\right\}$
(d) $\left.V=\left\{\begin{array}{l|l}2 x-y \\ x+3 y\end{array}\right] \begin{array}{c}x, y \text { arbitrary } \\ \text { constants }\end{array}\right\}$

Is closed under addition:	YES	NO
Is closed under scalar multiplication:	YES	NO
Is a vector subspace of \mathbb{R}^{2} :	YES	NO
Is closed under addition:	YES	NO
Is closed under scalar multiplication:	YES	NO
Is a vector subspace of \mathbb{R}^{2} :	YES	NO
Is closed under addition:	YES	NO
Is closed under scalar multiplication:	YES	NO
Is a vector subspace of \mathbb{R}^{2} :	YES	NO
Is closed under addition:	YES	NO
Is closed under scalar multiplication:	YES	NO
Is a vector subspace of \mathbb{R}^{2} :	YES	NO

14. In each of the following, a subset V of \mathbb{R}^{3} is given. Circle one answer:
(a) $V=\left\{\left.\left[\begin{array}{c}x+y+z \\ x+z \\ y\end{array}\right] \right\rvert\, x, y, z\right.$ arbitrary constants $\}$

Is closed under addition: YES NO
Is closed under scalar multiplication: YES NO
Is a vector subspace of \mathbb{R}^{3} : YES NO
(b) $V=\left\{\left.\left[\begin{array}{c}x+y+z \\ x+z \\ y+1\end{array}\right] \right\rvert\, x, y, z\right.$ arbitrary constants $\}$

Is closed under addition: YES NO
Is closed under scalar multiplication: YES NO
Is a vector subspace of \mathbb{R}^{3} : YES NO
(c) $V=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x, y, z\right.$ positive integers $\}$

Is closed under addition:
YES NO
Is closed under scalar multiplication: YES NO
Is a vector subspace of \mathbb{R}^{3} : YES NO
(d) $V=\left\{\left.\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \right\rvert\, x y \leq 0\right\}$

Is closed under addition:
YES NO
Is closed under scalar multiplication: YES NO
Is a vector subspace of \mathbb{R}^{3} : YES NO

