Prof. A. Suciu · MTH U371–LINEAR ALGEBRA · Spring 2005 PRACTICE FINAL EXAM

1. Are the following vectors independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

$$\vec{v}_1 = \begin{bmatrix} 3\\0\\-1 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 0\\3\\5 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} 1\\-4\\-7 \end{bmatrix}$$

2. Consider the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.

- (a) Are the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
- (b) Write the vector $\vec{b} = \begin{bmatrix} 1 \\ -7 \\ 5 \end{bmatrix}$ as a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$.

3. Consider the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 6 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} -7 \\ 1 \\ 4 \end{bmatrix}$.

(a) Are the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

(b) Write the vector
$$\vec{b} = \begin{bmatrix} -2\\1\\3 \end{bmatrix}$$
 as a linear combination of the vectors $\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3$.

4. Let
$$A = \begin{bmatrix} 2 & 0 & 3 \\ 4 & 5 & 7 \\ -6 & 10 & -7 \end{bmatrix}$$
, $\vec{b} = \begin{bmatrix} -2 \\ -3 \\ 8 \end{bmatrix}$.

- (a) Solve the system of linear equations $A\vec{x} = \vec{b}$, indicating clearly the row operations, pivots, leading variables, and free variables.
- (b) Find a basis for the image of A.
- (c) Find a basis for the kernel of A.
- (d) Find the rank of A.

(e) Find a non-zero vector that is orthogonal to both the vectors
$$\begin{bmatrix} 2\\0\\3 \end{bmatrix}$$
 and $\begin{bmatrix} -6\\10\\-7 \end{bmatrix}$

echelon form.

- (a) Find a basis for the image of A.
- (b) Find a basis for the kernel of A.
- (c) Compute: rank A, dim (im A), dim (ker A), dim (im A^{\top}), dim (ker A^{\top}).

reduced echelon form.

- (a) Find a basis for the image of A.
- (b) Find a basis for the kernel of A.
- (c) Compute: rank A, dim (im A), dim (ker A), dim (im A^{\top}), dim (ker A^{\top}).
- 7. (a) Find the 3×3 matrix A associated with the linear mapping that rotates the yz-plane by -60° and reflects the x-axis about the yz-plane.
 - (b) Is A orthogonal?
 - (c) What is det(A)?
 - (d) What is the image of the point (-3, 2, 1) under the above mapping?
- 8. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ which is a counterclockwise rotation of 30° about the *y*-axis, followed by a dilation by a factor of 6.
 - (a) Find the matrix A corresponding to T.
 - (b) What is the image of the vector $\begin{bmatrix} 5\\4\\3 \end{bmatrix}$ under the map T?
- 9. Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that rotates the *xz*-plane by 120° and reflects the *y*-axis about the *xz*-plane.
 - (a) Find the matrix A corresponding to T.
 - (b) What is det(A)?
 - (c) Is A orthogonal? Why, or why not?
 - (d) Find A^{-1} .

(e) What is the image of the vector $\begin{bmatrix} -2\\5\\1 \end{bmatrix}$ under the map T?

10. In each of the following, a vector space V and a subset S are given. Circle one answer:

(a) $V = \mathbb{R}^4$, $S = \{(-t, 4t, 3t, 0) \mid t \text{ is a real num} S \text{ is closed under addition:} S \text{ is closed under scalar multiplication:} S \text{ is a vector subspace of } V$:	nber} YES YES YES	NO NO NO
(b) $V = \mathbb{R}^4$, $S = \{(-t, 4t, 3t, 1) \mid t \text{ is a positive} S \text{ is closed under addition:} S \text{ is closed under scalar multiplication:} S \text{ is a vector subspace of } V$:	real num YES YES YES	NO NO
(c) $V = \mathbb{R}^4$, $S = \{x \in V \mid x_1 + 2x_2 - x_3 = 0, S \text{ is closed under addition:} S \text{ is closed under scalar multiplication:} S \text{ is a vector subspace of } V$:	$2x_1 + x_3$ YES YES YES	NO
(d) $V = \mathbb{R}^4$, $S = \{x \in V \mid x_1 + 2x_2 - x_3 \ge 0\}$ S is closed under addition: S is closed under scalar multiplication: S is a vector subspace of V :	YES YES YES	NO NO NO

11. In each of the following cases, determine whether or not the given subset V of \mathbb{R}^n is a vector subspace. If it is, identify it as either the kernel or the image of a matrix A, and write down the matrix A. If it is not a vector subspace, explain why not.

(a)
$$V = \{\vec{x} \in \mathbb{R}^3 \mid \vec{x} = t \begin{bmatrix} 1\\2\\1 \end{bmatrix} + s \begin{bmatrix} 3\\0\\4 \end{bmatrix}$$
, where t and s take all real values $\}$
(b) $V = \{\vec{x} \in \mathbb{R}^3 \mid \vec{x} = t \begin{bmatrix} 1\\2\\1 \end{bmatrix} + \begin{bmatrix} 3\\0\\4 \end{bmatrix}$, where t takes all real values $\}$
(c) $V = \{\vec{x} \in \mathbb{R}^4 \mid x_1 + x_2 - x_3x_4 = 0\}$
(d) $V = \{\vec{x} \in \mathbb{R}^4 \mid x_1 + x_2 + 3x_3 = 0, x_3 - x_4 = 0, 2x_1 + x_3 + x_4 = 0\}$

12. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} -2 \\ 3 \\ 4 \end{bmatrix}$.

(a) Find the least squares solution \vec{x}^* of the inconsistent system $A\vec{x} = \vec{b}$.

(b) Use your answer to part (a) to find the projection of \vec{b} onto the image of A.

13. Let
$$A = \begin{bmatrix} -2 & -1 \\ 3 & 0 \\ 1 & 0 \\ 2 & 1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 0 \end{bmatrix}$

(a) Find the least squares solution \vec{x}^* of the inconsistent system $A\vec{x} = \vec{b}$.

(b) Find the 4×4 matrix associated with the projection of \mathbb{R}^4 onto the subspace im A.

(c) Find the projection of \vec{b} onto im A.

14. The number of students getting an A on the Spring final exam of a certain Linear Algebra course is as follows:

Year	1997	1998	1999	2000
A's	2	1	4	6

Represent the years 1997, 1998, 1999, 2000 as 0, 1, 2, 3, respectively, and let t denote the year (after 1997). Let y denote the number of A's.

- (a) Find the line y = mt + b that best fits the above data points, using the least squares method.
- (b) Use the equation obtained in part (a) to estimate how many students will get an A in Linear Algebra in Spring 2001.

15. Let
$$\mathbf{a}_1 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

- (a) Find unit vectors in the direction of \mathbf{a}_1 and \mathbf{a}_2 , respectively.
- (b) Find the lengths of \mathbf{a}_1 and \mathbf{a}_2 , and compute the dot product $\mathbf{a}_1 \cdot \mathbf{a}_2$.
- (c) Find the angle between \mathbf{a}_1 and \mathbf{a}_2 . Are \mathbf{a}_1 and \mathbf{a}_2 orthogonal?
- (d) Let $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}$. Use the Gram-Schmidt process to find the QR-factorization of A.

16. Apply the Gram-Schmidt process to the vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, and write the result in the form A = QR.

17. Consider the independent vectors $\vec{v}_1 = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Use the Gram-Schmidt process to find an othonormal basis, $\vec{u}_1, \vec{u}_2, \vec{u}_3$, for the space spanned by the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$.

- **18.** Let $A = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$.
 - (a) Find the characteristic equation for A.
 - (b) Find the eigenvalues of A.
 - (c) Find a basis for each eigenspace of A.
 - (d) Find an invertible matrix S and a diagonal matrix D such that $A = SDS^{-1}$.

19. Let
$$A = \begin{bmatrix} 5 & 6 & 0 \\ 7 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
.

- (a) Find the characteristic polynomial of A.
- (b) Find the eigenvalues of A.
- (c) Find a basis for each eigenspace of A.
- (d) Find an invertible matrix S and a diagonal matrix D such that $A = SDS^{-1}$.

20. Let $A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 9 & -5 \end{bmatrix}$.

- (a) Find the characteristic polynomial of A.
- (b) Find the eigenvalues of A.
- (c) Find a basis for each eigenspace of A.
- **21.** A 5 × 5 matrix A has eigenvalues $\lambda_1 = -1$, $\lambda_2 = 2$, $\lambda_3 = 2$, $\lambda_4 = 3$, $\lambda_5 = 4$.
 - (a) Compute tr A, det A.
 - (b) Compute tr A^2 , det A^2 .
 - (c) Compute det $(3I_5 A)$.
 - (d) Compute $\det(3A)$.
 - (e) Is A invertible? Why, or why not?
 - (f) Is A orthogonal? Why, or why not?
- **22.** A 4 × 4 matrix A has eigenvalues $\lambda_1 = -2$, $\lambda_2 = 1$, $\lambda_3 = 3$, $\lambda_4 = 4$.
 - (a) What is the characteristic polynomial of A?
 - (b) Compute tr(A) and det(A).
 - (c) Compute det (-2A).
 - (d) Compute det $(A + 2I_4)$.
 - (e) What are the eigenvalues of A^3 ?
 - (f) Compute $tr(A^3)$ and $det(A^3)$.
 - (g) Is A invertible? Why, or why not?
 - (h) Is A orthogonal? Why, or why not?
 - (i) Is A diagonalizable? Why, or why not?
- **23.** Find a 2×2 matrix A such that $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are eigenvectors of A, with eigenvalues -2 and 5, respectively.
- **24.** Let $A = \begin{bmatrix} 27 & -12 \\ 56 & -25 \end{bmatrix}$. Write A^t (the matrix A raised to the power t, a positive integer) in the form of a single 2×2 matrix. (You may use the fact that the vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector with associated eigenvalue 3, and the vector $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$ is an eigenvector with associated eigenvalue -1.)

Spring 2005

- **25.** A 2×2 matrix A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 3$, with corresponding eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$. Write A^t (for t an integer) in the form of a single 2×2 matrix.
- **26.** Suppose a 3×3 matrix A has an eigenvalue $\lambda_1 = 4$ and two complex conjugate eigenvalues λ_2 and λ_3 . Suppose also tr(A) = 8 and det(A) = 52.
 - (a) Find λ_2 and λ_3 .
 - (b) Find the eigenvalues of A^2 .
 - (c) Compute $tr(A^2)$ and $det(A^2)$.

27. Solve the discrete dynamical system $\vec{x}(t+1) = \begin{bmatrix} 1.5 & 0 \\ 0 & 0.5 \end{bmatrix} \vec{x}(t)$ with initial condition $\vec{x}_0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Write down the formula for $\vec{x}(t)$, and sketch the phase portrait (indicate the past and the future).

28. Solve the discrete dynamical system $\vec{x}(t+1) = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix} \vec{x}(t)$ with initial condition $\vec{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Use your solution to compute $\vec{x}(1)$ and $\vec{x}(2)$. What is $\lim_{t \to \infty} \vec{x}(t)$?

29. For the symmetric matrix $A = \begin{bmatrix} 2 & 2 \\ 2 & -5 \end{bmatrix}$, find an orthogonal matrix S and a diagonal matrix D such that $A = SDS^{\top}$.

30. For the symmetric matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, find an orthogonal matrix S and a diagonal matrix D such that $A = SDS^{\top}$.

31. Find the singular value decomposition for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.

32. Find the singular value decomposition for the matrix $A = \begin{bmatrix} 6 & 3 \\ -1 & 2 \end{bmatrix}$.