Prof. A. Suciu . MTH U371-LINEAR ALGEBRA
 Spring 2005
 PRACTICE FINAL EXAM

1. Are the following vectors independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

$$
\vec{v}_{1}=\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
3 \\
5
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{c}
1 \\
-4 \\
-7
\end{array}\right]
$$

2. Consider the vectors $\vec{v}_{1}=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$.
(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Write the vector $\vec{b}=\left[\begin{array}{r}1 \\ -7 \\ 5\end{array}\right]$ as a linear combination of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
3. Consider the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}6 \\ 2 \\ 4\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}-7 \\ 1 \\ 4\end{array}\right]$.
(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ linearly independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.
(b) Write the vector $\vec{b}=\left[\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right]$ as a linear combination of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
4. Let $A=\left[\begin{array}{ccc}2 & 0 & 3 \\ 4 & 5 & 7 \\ -6 & 10 & -7\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}-2 \\ -3 \\ 8\end{array}\right]$.
(a) Solve the system of linear equations $A \vec{x}=\vec{b}$, indicating clearly the row operations, pivots, leading variables, and free variables.
(b) Find a basis for the image of A.
(c) Find a basis for the kernel of A.
(d) Find the rank of A.
(e) Find a non-zero vector that is orthogonal to both the vectors $\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}-6 \\ 10 \\ -7\end{array}\right]$.
5. The matrix $A=\left[\begin{array}{rrccc}1 & 2 & 3 & 1 & 0 \\ 2 & 3 & 5 & 2 & 1 \\ 3 & 5 & 8 & 3 & 1 \\ 4 & 7 & 11 & 4 & 1\end{array}\right]$ has the matrix $E=\left[\begin{array}{rrrrr}1 & 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ as its row-reduced echelon form.
(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) Compute: $\operatorname{rank} A, \operatorname{dim}(\operatorname{im} A), \operatorname{dim}(\operatorname{ker} A), \operatorname{dim}\left(\operatorname{im} A^{\top}\right), \operatorname{dim}\left(\operatorname{ker} A^{\top}\right)$.
6. The matrix $A=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \\ 16 & 17 & 18 & 19 & 20\end{array}\right]$ has the matrix $E=\left[\begin{array}{ccccc}1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ as its rowreduced echelon form.
(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) Compute: $\operatorname{rank} A, \operatorname{dim}(\operatorname{im} A), \operatorname{dim}(\operatorname{ker} A), \operatorname{dim}\left(\operatorname{im} A^{\top}\right), \operatorname{dim}\left(\operatorname{ker} A^{\top}\right)$.
7. (a) Find the 3×3 matrix A associated with the linear mapping that rotates the $y z$-plane by -60° and reflects the x-axis about the $y z$-plane.
(b) Is A orthogonal?
(c) What is $\operatorname{det}(A)$?
(d) What is the image of the point $(-3,2,1)$ under the above mapping?
8. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ which is a counterclockwise rotation of 30° about the y-axis, followed by a dilation by a factor of 6 .
(a) Find the matrix A corresponding to T.
(b) What is the image of the vector $\left[\begin{array}{l}5 \\ 4 \\ 3\end{array}\right]$ under the map T ?
9. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that rotates the $x z$-plane by 120° and reflects the y-axis about the $x z$-plane.
(a) Find the matrix A corresponding to T.
(b) What is $\operatorname{det}(A)$?
(c) Is A orthogonal? Why, or why not?
(d) Find A^{-1}.
(e) What is the image of the vector $\left[\begin{array}{c}-2 \\ 5 \\ 1\end{array}\right]$ under the map T ?
10. In each of the following, a vector space V and a subset S are given. Circle one answer:
(a) $V=\mathbb{R}^{4}, S=\{(-t, 4 t, 3 t, 0) \mid t$ is a real number $\}$

S is closed under addition:	YES	NO
S is closed under scalar multiplication:	YES	NO
S is a vector subspace of $V:$	YES	NO

(b) $V=\mathbb{R}^{4}, S=\{(-t, 4 t, 3 t, 1) \mid t$ is a positive real number $\}$

S is closed under addition:	YES	NO
S is closed under scalar multiplication:	YES	NO
S is a vector subspace of $V:$	YES	NO

(c) $V=\mathbb{R}^{4}, S=\left\{x \in V \mid x_{1}+2 x_{2}-x_{3}=0, \quad 2 x_{1}+x_{3}-3 x_{4}=0\right\}$
S is closed under addition: YES NO
S is closed under scalar multiplication: YES NO
S is a vector subspace of V :
YES NO
(d) $V=\mathbb{R}^{4}, S=\left\{x \in V \mid x_{1}+2 x_{2}-x_{3} \geq 0\right\}$
S is closed under addition: YES NO
S is closed under scalar multiplication: YES NO
S is a vector subspace of V :
YES NO
11. In each of the following cases, determine whether or not the given subset V of \mathbb{R}^{n} is a vector subspace. If it is, identify it as either the kernel or the image of a matrix A, and write down the $\operatorname{matrix} A$. If it is not a vector subspace, explain why not.
(a) $V=\left\{\vec{x} \in \mathbb{R}^{3} \left\lvert\, \vec{x}=t\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+s\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]\right.\right.$, where t and s take all real values $\}$
(b) $V=\left\{\vec{x} \in \mathbb{R}^{3} \left\lvert\, \vec{x}=t\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]\right.\right.$, where t takes all real values $\}$
(c) $V=\left\{\vec{x} \in \mathbb{R}^{4} \mid x_{1}+x_{2}-x_{3} x_{4}=0\right\}$
(d) $V=\left\{\vec{x} \in \mathbb{R}^{4} \mid x_{1}+x_{2}+3 x_{3}=0, \quad x_{3}-x_{4}=0, \quad 2 x_{1}+x_{3}+x_{4}=0\right\}$
12. Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1 \\ 1 & 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}-2 \\ 3 \\ 4\end{array}\right]$.
(a) Find the least squares solution \vec{x}^{*} of the inconsistent system $A \vec{x}=\vec{b}$.
(b) Use your answer to part (a) to find the projection of \vec{b} onto the image of A.
13. Let $A=\left[\begin{array}{rr}-2 & -1 \\ 3 & 0 \\ 1 & 0 \\ 2 & 1\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right]$.
(a) Find the least squares solution \vec{x}^{*} of the inconsistent system $A \vec{x}=\vec{b}$.
(b) Find the 4×4 matrix associated with the projection of \mathbb{R}^{4} onto the subspace im A.
(c) Find the projection of \vec{b} onto $\operatorname{im} A$.
14. The number of students getting an A on the Spring final exam of a certain Linear Algebra course is as follows:

Year	1997	1998	1999	2000
A's	2	1	4	6

Represent the years $1997,1998,1999,2000$ as $0,1,2,3$, respectively, and let t denote the year (after 1997). Let y denote the number of A's.
(a) Find the line $y=m t+b$ that best fits the above data points, using the least squares method.
(b) Use the equation obtained in part (a) to estimate how many students will get an A in Linear Algebra in Spring 2001.
15. Let $\quad \mathbf{a}_{1}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \quad \mathbf{a}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
(a) Find unit vectors in the direction of \mathbf{a}_{1} and \mathbf{a}_{2}, respectively.
(b) Find the lengths of \mathbf{a}_{1} and \mathbf{a}_{2}, and compute the dot product $\mathbf{a}_{1} \cdot \mathbf{a}_{2}$.
(c) Find the angle between \mathbf{a}_{1} and \mathbf{a}_{2}. Are \mathbf{a}_{1} and \mathbf{a}_{2} orthogonal?
(d) Let $A=\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{a}_{2}\end{array}\right]$. Use the Gram-Schmidt process to find the $Q R$-factorization of A.
16. Apply the Gram-Schmidt process to the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$, and write the result in the form $A=Q R$.
17. Consider the independent vectors $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 3 \\ 4\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Use the Gram-Schmidt process to find an othonormal basis, $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$, for the space spanned by the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
18. Let $A=\left[\begin{array}{ll}2 & 2 \\ 3 & 1\end{array}\right]$.
(a) Find the characteristic equation for A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
(d) Find an invertible matrix S and a diagonal matrix D such that $A=S D S^{-1}$.
19. Let $A=\left[\begin{array}{lll}5 & 6 & 0 \\ 7 & 6 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
(d) Find an invertible matrix S and a diagonal matrix D such that $A=S D S^{-1}$.
20. Let $A=\left[\begin{array}{rrr}4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 9 & -5\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
21. A 5×5 matrix A has eigenvalues $\lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=2, \lambda_{4}=3, \lambda_{5}=4$.
(a) Compute $\operatorname{tr} A, \operatorname{det} A$.
(b) Compute $\operatorname{tr} A^{2}, \operatorname{det} A^{2}$.
(c) Compute $\operatorname{det}\left(3 I_{5}-A\right)$.
(d) Compute $\operatorname{det}(3 A)$.
(e) Is A invertible? Why, or why not?
(f) Is A orthogonal? Why, or why not?
22. A 4×4 matrix A has eigenvalues $\lambda_{1}=-2, \lambda_{2}=1, \lambda_{3}=3, \lambda_{4}=4$.
(a) What is the characteristic polynomial of A ?
(b) Compute $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
(c) Compute $\operatorname{det}(-2 A)$.
(d) Compute $\operatorname{det}\left(A+2 I_{4}\right)$.
(e) What are the eigenvalues of A^{3} ?
(f) Compute $\operatorname{tr}\left(A^{3}\right)$ and $\operatorname{det}\left(A^{3}\right)$.
(g) Is A invertible? Why, or why not?
(h) Is A orthogonal? Why, or why not?
(i) Is A diagonalizable? Why, or why not?
23. Find a 2×2 matrix A such that $\left[\begin{array}{l}4 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are eigenvectors of A, with eigenvalues -2 and 5 , respectively.
24. Let $A=\left[\begin{array}{ll}27 & -12 \\ 56 & -25\end{array}\right]$. Write A^{t} (the matrix A raised to the power t, a positive integer) in the form of a single 2×2 matrix. (You may use the fact that the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector with associated eigenvalue 3 , and the vector $\left[\begin{array}{l}3 \\ 7\end{array}\right]$ is an eigenvector with associated eigenvalue -1 .)
25. A 2×2 matrix A has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=3$, with corresponding eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}5 \\ -1\end{array}\right]$. Write A^{t} (for t an integer) in the form of a single 2×2 matrix.
26. Suppose a 3×3 matrix A has an eigenvalue $\lambda_{1}=4$ and two complex conjugate eigenvalues λ_{2} and λ_{3}. Suppose also $\operatorname{tr}(A)=8$ and $\operatorname{det}(A)=52$.
(a) Find λ_{2} and λ_{3}.
(b) Find the eigenvalues of A^{2}.
(c) Compute $\operatorname{tr}\left(A^{2}\right)$ and $\operatorname{det}\left(A^{2}\right)$.
27. Solve the discrete dynamical system $\vec{x}(t+1)=\left[\begin{array}{cc}1.5 & 0 \\ 0 & 0.5\end{array}\right] \vec{x}(t)$ with initial condition $\vec{x}_{0}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Write down the formula for $\vec{x}(t)$, and sketch the phase portrait (indicate the past and the future).
28. Solve the discrete dynamical system $\vec{x}(t+1)=\left[\begin{array}{ll}0.6 & 0.3 \\ 0.4 & 0.7\end{array}\right] \vec{x}(t)$ with initial condition $\vec{x}_{0}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Use your solution to compute $\vec{x}(1)$ and $\vec{x}(2)$. What is $\lim _{t \rightarrow \infty} \vec{x}(t)$?
29. For the symmetric matrix $A=\left[\begin{array}{cc}2 & 2 \\ 2 & -5\end{array}\right]$, find an orthogonal matrix S and a diagonal matrix D such that $A=S D S^{\top}$.
30. For the symmetric matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]$, find an orthogonal matrix S and a diagonal matrix D such that $A=S D S^{\top}$.
31. Find the singular value decomposition for the matrix $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$.
32. Find the singular value decomposition for the matrix $A=\left[\begin{array}{cc}6 & 3 \\ -1 & 2\end{array}\right]$.

