l	1	2	3	4	5	6	7	8	Σ

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS

MTH U371

FINAL EXAM

Spring 2005

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces. Calculators are permitted. A single sheet of formulas is allowed. **Show your work.** If there is not enough room to show your work, use the back page.

1. 12 points Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 2\\-6\\8 \end{bmatrix}, \qquad \vec{v}_2 = \begin{bmatrix} 7\\3\\-2 \end{bmatrix}, \qquad \vec{v}_3 = \begin{bmatrix} 9\\1\\1 \end{bmatrix}.$$

(a) Are the vectors \vec{v}_1 , \vec{v}_2 , \vec{v}_3 linearly independent or dependent? If they are independent, explain why. If they are dependent, exhibit a linear dependence relation among them.

(b) Write the vector
$$\vec{b} = \begin{bmatrix} 10 \\ -2 \\ 5 \end{bmatrix}$$
 as a linear combination of the vectors $\vec{v}_1, \ \vec{v}_2, \ \vec{v}_3$.

- 2. 10 points The matrix $A = \begin{bmatrix} 1 & -3 & 5 & -4 & 2 & 4 \\ 2 & -6 & 10 & -8 & 1 & 5 \\ -3 & 9 & -15 & -12 & 0 & 18 \\ 0 & 0 & 0 & 1 & 2 & 3 \end{bmatrix}$ has the matrix $E = \begin{bmatrix} 1 & -3 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$ as its row-reduced echelon form.
 - (a) Find a basis for the image of A.

(b) Find a basis for the kernel of A.

- (c) Compute:
 - rank A =
 - dim $(\ker A) =$
 - dim $(\operatorname{im} A)^{\perp} =$
 - dim $(\ker A)^{\perp} =$

3. 12 pts

(a) Find the least squares solution \vec{x}^* of the inconsistent system $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 1 & 2\\ 3 & 4\\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 5\\ 3\\ -2 \end{bmatrix}$$

(b) Use your answer to part (a) to find the projection of \vec{b} onto the image of A.

(c) Determine the error $||\vec{b} - A\vec{x}^*||$.

MTH U371

4. 14 pts Apply the Gram-Schmidt process to the vectors

$$\vec{v}_1 = \begin{bmatrix} 3\\4\\0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\0\\2 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} -2\\1\\1 \end{bmatrix},$$

and write the result in the form A = QR, with Q orthogonal and R upper-diagonal.

- 5. 14 pts Consider the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that rotates the *yz*-plane by 45° in a counterclockwise direction, and reflects the *x*-axis about the *yz*-plane.
 - (a) Find the matrix A corresponding to T.

(b) What is det(A)?

(c) Is A orthogonal? Why, or why not?

(d) Find A^{-1} .

(e) What is the image of the vector
$$\begin{bmatrix} 2\\ \sqrt{2}\\ 2\sqrt{2} \end{bmatrix}$$
 under the map *T*?

6. 14 pts Let
$$A = \begin{bmatrix} 5 & 4 & -2 \\ 0 & 3 & 0 \\ 6 & 12 & -3 \end{bmatrix}$$
.
(a) Find the characteristic polynomial of A .

- (b) Find the eigenvalues of A.
- (c) Find a basis for each eigenspace of A.

(d) Find an invertible matrix S and a diagonal matrix D such that $A = S \cdot D \cdot S^{-1}$. [You do not have to calculate S^{-1} .]

- **7.** 12 points A 2 × 2 matrix has eigenvalues $\lambda_1 = -4$ and $\lambda_2 = 3$.
 - (a) What is the characteristic polynomial of A?

(b) Compute tr(A) and det(A).

(c) Compute $\det(5A)$.

(d) What are the eigenvalues of A^2 ?

(e) Compute $\operatorname{tr}(A^2)$ and $\det(A^2)$.

(f) Is A invertible? If no, say why not. If yes, compute the trace of the inverse matrix.

- 8. 14 pts Find the singular value decomposition for the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$, as follows: (a) Find the symmetrized matrix $B = A^{\top}A$.
 - (b) Find the eigenvalues λ_1 and λ_2 of B.
 - (c) Find the singular values σ_1 and σ_2 of A.
 - (d) Find eigenvectors \vec{w}_1 and \vec{w}_2 for B.
 - (e) Now find an orthonormal set of eigenvectors, \vec{v}_1 and \vec{v}_2 .
 - (f) Use the vectors \vec{v}_i , the singular values σ_i , and the matrix A to find another orthonormal set, \vec{u}_1 and \vec{u}_2 .
 - (g) Put everything together to arrive at the SVD decomposition, $A = U \cdot \Sigma \cdot V^{\top}$. Check your answer!