1	2	3	4	5	6	7	8	Σ

Name: \qquad

NORTHEASTERN UNIVERSITY DEPARTMENT OF MATHEMATICS Final Exam

Instructions: Put your name in the blanks above. Put your final answers to each question in the designated spaces. Calculators are permitted. A single sheet of formulas is allowed. Show your work. If there is not enough room to show your work, use the back page.

1. 12 points Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{c}
2 \\
-6 \\
8
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
7 \\
3 \\
-2
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
9 \\
1 \\
1
\end{array}\right] .
$$

(a) Are the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ linearly independent or dependent? If they are independent, explain why. If they are dependent, exhibit a linear dependence relation among them.
(b) Write the vector $\vec{b}=\left[\begin{array}{c}10 \\ -2 \\ 5\end{array}\right]$ as a linear combination of the vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.
2. 10 points The matrix $A=\left[\begin{array}{cccccc}1 & -3 & 5 & -4 & 2 & 4 \\ 2 & -6 & 10 & -8 & 1 & 5 \\ -3 & 9 & -15 & -12 & 0 & 18 \\ 0 & 0 & 0 & 1 & 2 & 3\end{array}\right]$ has the matrix
$E=\left[\begin{array}{cccccc}1 & -3 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$ as its row-reduced echelon form.
(a) Find a basis for the image of A.
(b) Find a basis for the kernel of A.
(c) Compute:

- $\operatorname{rank} A=$
- $\operatorname{dim}(\operatorname{ker} A)=$
- $\operatorname{dim}(\operatorname{im} A)^{\perp}=$
- $\operatorname{dim}(\operatorname{ker} A)^{\perp}=$

3. 12 pts
(a) Find the least squares solution \vec{x}^{*} of the inconsistent system $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
0 & 1
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{c}
5 \\
3 \\
-2
\end{array}\right]
$$

(b) Use your answer to part (a) to find the projection of \vec{b} onto the image of A.
(c) Determine the error $\left\|\vec{b}-A \vec{x}^{*}\right\|$.
4. 14 pts Apply the Gram-Schmidt process to the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

and write the result in the form $A=Q R$, with Q orthogonal and R upper-diagonal.
5. 14 pts Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that rotates the $y z$-plane by 45° in a counterclockwise direction, and reflects the x-axis about the $y z$-plane.
(a) Find the matrix A corresponding to T.
(b) What is $\operatorname{det}(A)$?
(c) Is A orthogonal? Why, or why not?
(d) Find A^{-1}.
(e) What is the image of the vector $\left[\begin{array}{c}2 \\ \sqrt{2} \\ 2 \sqrt{2}\end{array}\right]$ under the map T ?
6. 14 pts Let $A=\left[\begin{array}{ccc}5 & 4 & -2 \\ 0 & 3 & 0 \\ 6 & 12 & -3\end{array}\right]$.
(a) Find the characteristic polynomial of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A.
(d) Find an invertible matrix S and a diagonal matrix D such that $A=S \cdot D \cdot S^{-1}$. [You do not have to calculate S^{-1}.]
7. 12 points A 2×2 matrix has eigenvalues $\lambda_{1}=-4$ and $\lambda_{2}=3$.
(a) What is the characteristic polynomial of A ?
(b) Compute $\operatorname{tr}(A)$ and $\operatorname{det}(A)$.
(c) Compute $\operatorname{det}(5 A)$.
(d) What are the eigenvalues of A^{2} ?
(e) Compute $\operatorname{tr}\left(A^{2}\right)$ and $\operatorname{det}\left(A^{2}\right)$.
(f) Is A invertible? If no, say why not. If yes, compute the trace of the inverse matrix.
8. 14 pts Find the singular value decomposition for the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 0 & 2\end{array}\right]$, as follows:
(a) Find the symmetrized matrix $B=A^{\top} A$.
(b) Find the eigenvalues λ_{1} and λ_{2} of B.
(c) Find the singular values σ_{1} and σ_{2} of A.
(d) Find eigenvectors \vec{w}_{1} and \vec{w}_{2} for B.
(e) Now find an orthonormal set of eigenvectors, \vec{v}_{1} and \vec{v}_{2}.
(f) Use the vectors \vec{v}_{i}, the singular values σ_{i}, and the matrix A to find another orthonormal set, \vec{u}_{1} and \vec{u}_{2}.
(g) Put everything together to arrive at the SVD decomposition, $A=U \cdot \Sigma \cdot V^{\top}$. Check your answer!

