Instructor: Prof. A. Suciu

MTH U371

Name: _____

LINEAR ALGEBRA

Spring 2005

QUIZ 4

1. 8 points Apply the Gram-Schmidt process to the vectors $\vec{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$, and write the result in the form $A = Q \cdot R$.

2. 7 points

Consider the vectors $\vec{v} = \begin{bmatrix} 1\\0\\2\\-2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 4\\1\\3\\1 \end{bmatrix}$.

(a) Find the matrix of the orthogonal projection onto the line L in \mathbb{R}^4 spanned by \vec{v} .

(b) Find the projection of \vec{w} onto the line L.

3. 6 points

Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 be a 3×3 matrix.

(a) Is the matrix $B = A^{\top}AA^{\top}$ symmetric? Justify your answer.

(b) Is the matrix $B = 2A + 2A^{\top}$ symmetric? Justify your answer.

(c) Suppose A is orthogonal. What is A^{-1} ?

4. 9 points

(a) Find the least squares solution \vec{x}^* of the inconsistent system $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} 3 & 1\\ 1 & 1\\ 1 & 0 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$

(b) Use your answer to part (a) to find the projection of \vec{b} onto im A.

(c) Determine the error $||\vec{b} - A\vec{x}^*||.$