\qquad

1. 8 points Apply the Gram-Schmidt process to the vectors $\vec{v}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}-2 \\ 0\end{array}\right]$, and write the result in the form $A=Q \cdot R$.
2. 7 points

Consider the vectors $\vec{v}=\left[\begin{array}{c}1 \\ 0 \\ 2 \\ -2\end{array}\right]$ and $\vec{w}=\left[\begin{array}{l}4 \\ 1 \\ 3 \\ 1\end{array}\right]$.
(a) Find the matrix of the orthogonal projection onto the line L in \mathbb{R}^{4} spanned by \vec{v}.
(b) Find the projection of \vec{w} onto the line L.
3. 6 points

Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$ be a 3×3 matrix.
(a) Is the matrix $B=A^{\top} A A^{\top}$ symmetric? Justify your answer.
(b) Is the matrix $B=2 A+2 A^{\top}$ symmetric? Justify your answer.
(c) Suppose A is orthogonal. What is A^{-1} ?
4. 9 points
(a) Find the least squares solution \vec{x}^{*} of the inconsistent system $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

(b) Use your answer to part (a) to find the projection of \vec{b} onto $\operatorname{im} A$.
(c) Determine the error $\left\|\vec{b}-A \vec{x}^{*}\right\|$.

