Instructor: Prof. A. Suciu

Name: _____

MTH U371

LINEAR ALGEBRA

Spring 2005

QUIZ 3

		1	0	2	0	3
1. 12 points	Let $A =$	2	0	4	-1	7.
		-1	3	0	6	2

(a) Find the row reduced echelon form of A.

(b) Find a basis for the image of A.

(c) Find a basis for the kernel of A.

(d) Find the rank and the nullity of A.

2. 10 points Consider the following four vectors in \mathbb{R}^4 .

$$\vec{v}_1 = \begin{bmatrix} 1\\2\\-3\\2 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 0\\4\\0\\-4 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1\\-1\\-2\\4 \end{bmatrix}, \quad \vec{v}_4 = \begin{bmatrix} 0\\1\\-5\\4 \end{bmatrix}$$

(a) Are the vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, $\vec{v_4}$ independent or dependent? If they are independent, say why. If they are dependent, exhibit a linear dependence relation among them.

(b) Do the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ form a basis for \mathbb{R}^4 ? Explain your answer.

- (c) Do the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ span \mathbb{R}^4 ? Explain your answer.
- **3.** 8 points Let V be the subspace of \mathbb{R}^3 defined by the equation $2x_1 3x_2 + 4x_3 = 0$. (a) Express V as the kernel of a matrix A.

(b) Express V as the image of a matrix B.

(c) Find a basis for V.