Solutions to Quiz 5

1. Find the Laplace transforms $F(s)$ of the following functions $f(t)$:
(a) $f(t)= \begin{cases}0, & t<3 \\ t^{2}-6 t+1, & t \geq 3\end{cases}$

$$
f(t)=u_{3}(t)\left((t-3)^{2}-8\right) \quad \longrightarrow \quad F(s)=e^{-3 s}\left(\frac{2}{s^{3}}-\frac{8}{s}\right)
$$

(b) $f(t)=e^{-4 t} \delta_{3}(t)-e^{2 t-2} u_{1}(t)$

$$
F(s)=e^{-3(s+4)}-e^{-s} \frac{1}{s-2}
$$

2. Find the inverse Laplace transform $f(t)$ of the following functions $F(s)$:
(a) $F(s)=\frac{4 s-1}{s^{2}-4 s+13}$

$$
F(s)=4 \frac{s-2}{(s-2)^{2}+3^{2}}+\frac{7}{3} \frac{3}{(s-2)^{2}+3^{2}} \quad \longrightarrow \quad f(t)=e^{2 t}\left(4 \cos (3 t)+\frac{7}{3} \sin (3 t)\right)
$$

(b) $F(s)=\frac{4 e^{-s}}{s^{2}+6 s+5}$

$$
F(s)=e^{-s}\left(\frac{1}{s+1}-\frac{1}{s+5}\right) \quad \longrightarrow \quad f(t)=u_{1}(t)\left(e^{-(t-1)}-e^{-5(t-1)}\right)
$$

3. Consider the initial value problem

$$
y^{\prime \prime}-3 y^{\prime}+2 y=1+\sin (5 t), \quad y(0)=-4, \quad y^{\prime}(0)=6
$$

Determine the Laplace transform $Y(s)$ of the solution $y(t)$.

$$
Y(s)=\frac{\frac{1}{s}+\frac{5}{s^{2}+25}-4 s+18}{s^{2}-3 s+2}=\frac{-4 s^{4}+18 s^{3}-99 s^{2}+455 s+25}{s(s-1)(s-2)\left(s^{2}+25\right)}
$$

4. Solve the IVP: $\quad y^{\prime \prime}=u_{3}(t), \quad y(0)=0, \quad y^{\prime}(0)=0$.

$$
Y(s)=\mathcal{L}[y(t)] \quad \longrightarrow \quad Y(s)=\frac{e^{-3 s}}{s^{3}} \quad \longrightarrow \quad y(t)=\frac{1}{2} u_{3}(t)(t-3)^{2}
$$

