1. Find the Laplace transforms F(s) of the following functions f(t):

(a)
$$f(t) = \begin{cases} 0, & t < 2\\ (t-2)^2, & t \ge 2 \end{cases}$$

(b) $f(t) = \begin{cases} 0, & t < 1\\ t^2 - 2t + 2, & t \ge 1 \end{cases}$
(c) $f(t) = u_2(t)e^{3t-6}$
(d) $f(t) = t - u_1(t)(t-1)$
(e) $f(t) = (t-3)u_2(t) - (t-2)u_3(t)$
(f) $f(t) = e^{5t}u_2(t)$
(g) $f(t) = e^{3t}\delta_2(t) - e^{2t}\delta_3(t)$

2. Find the inverse Laplace transform f(t) of the following functions F(s):

(a)
$$F(s) = \frac{1}{s^2 + 8}$$

(b) $F(s) = \frac{1}{s^2 - 10}$
(c) $F(s) = \frac{1 - 2s}{s^2 + 4s + 5}$
(d) $F(s) = \frac{2s - 3}{s^2 + 2s + 10}$
(e) $F(s) = \frac{8s^2 - 4s + 12}{s(s^2 + 4)}$
(f) $F(s) = \frac{e^{-2s}}{s^2 + s - 2}$
(g) $F(s) = \frac{2(s - 1)e^{-2s}}{s^2 - 2s + 2}$
(h) $F(s) = 1 + \frac{e^{-s} + e^{-2s} - e^{-3s} - e^{-4s}}{s}$

- **3.** For the initial value problem $y'' + y = \cos(3t)$, y(0) = 1, y'(0) = 0.
 - (a) Determine the Laplace transform Y(s) of the solution y(t). (Do not solve the IVP).
 - (b) Find the partial fraction decomposition of $\frac{1}{s^3(s+1)^2}$.
- **4.** For the initial value problem y'' + 3y' + 2y = t, y(0) = 0, y'(0) = 2.
 - (a) Determine the Laplace transform Y(s) of the solution y(t). (Do not solve the IVP).
 - (b) Find the partial fraction decomposition of $\frac{1}{s^3(s-1)^2}$.
- 5. Use Laplace transforms to find the solution of the differential equation $y'' + y = \sin(2t)$ satisfying the initial conditions y(0) = 2, y'(0) = 1.
- **6.** Use Laplace transforms to solve the IVP: $y'' 2y' + 2y = e^{-t}$, y(0) = 0, y'(0) = 1.
- 7. Use Laplace transforms to solve the IVP: $y'' + 2y' + y = 4e^{-t}$, y(0) = 2, y'(0) = -1.
- 8. Solve the IVP: $y'' + 3y' + 2y = u_2(t), y(0) = 0, y'(0) = 1.$
- **9.** Solve the IVP: $y'' + 4y = 15e^{t-2}u_2(t), y(0) = 0, y'(0) = 0.$
- **10.** Solve the IVP: $2y'' + y' + 2y = \delta_5(t), \ y(0) = 0, \ y'(0) = 0.$
- **11.** Solve the IVP: $y'' + 2y' + 2y = \delta_{\pi}(t), y(0) = 1, y'(0) = 0.$