Practice Quiz 5

1. Find the Laplace transforms $F(s)$ of the following functions $f(t)$:
(a) $f(t)= \begin{cases}0, & t<2 \\ (t-2)^{2}, & t \geq 2\end{cases}$
(b) $f(t)= \begin{cases}0, & t<1 \\ t^{2}-2 t+2, & t \geq 1\end{cases}$
(c) $f(t)=u_{2}(t) e^{3 t-6}$
(d) $f(t)=t-u_{1}(t)(t-1)$
(e) $f(t)=(t-3) u_{2}(t)-(t-2) u_{3}(t)$
(f) $f(t)=e^{5 t} u_{2}(t)$
(g) $f(t)=e^{3 t} \delta_{2}(t)-e^{2 t} \delta_{3}(t)$
2. Find the inverse Laplace transform $f(t)$ of the following functions $F(s)$:
(a) $F(s)=\frac{1}{s^{2}+8}$
(b) $F(s)=\frac{1}{s^{2}-10}$
(c) $F(s)=\frac{1-2 s}{s^{2}+4 s+5}$
(d) $F(s)=\frac{2 s-3}{s^{2}+2 s+10}$
(e) $F(s)=\frac{8 s^{2}-4 s+12}{s\left(s^{2}+4\right)}$
(f) $F(s)=\frac{e^{-2 s}}{s^{2}+s-2}$
(g) $F(s)=\frac{2(s-1) e^{-2 s}}{s^{2}-2 s+2}$
(h) $F(s)=1+\frac{e^{-s}+e^{-2 s}-e^{-3 s}-e^{-4 s}}{s}$
3. For the initial value problem $y^{\prime \prime}+y=\cos (3 t), \quad y(0)=1, y^{\prime}(0)=0$.
(a) Determine the Laplace transform $Y(s)$ of the solution $y(t)$. (Do not solve the IVP).
(b) Find the partial fraction decomposition of $\frac{1}{s^{3}(s+1)^{2}}$.
4. For the initial value problem $y^{\prime \prime}+3 y^{\prime}+2 y=t, \quad y(0)=0, y^{\prime}(0)=2$.
(a) Determine the Laplace transform $Y(s)$ of the solution $y(t)$. (Do not solve the IVP).
(b) Find the partial fraction decomposition of $\frac{1}{s^{3}(s-1)^{2}}$.
5. Use Laplace transforms to find the solution of the differential equation $y^{\prime \prime}+y=\sin (2 t)$ satisfying the initial conditions $y(0)=2, y^{\prime}(0)=1$.
6. Use Laplace transforms to solve the IVP: $y^{\prime \prime}-2 y^{\prime}+2 y=e^{-t}, y(0)=0, y^{\prime}(0)=1$.
7. Use Laplace transforms to solve the IVP: $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}, y(0)=2, y^{\prime}(0)=-1$.
8. Solve the IVP: $y^{\prime \prime}+3 y^{\prime}+2 y=u_{2}(t), y(0)=0, y^{\prime}(0)=1$.
9. Solve the IVP: $y^{\prime \prime}+4 y=15 e^{t-2} u_{2}(t), y(0)=0, y^{\prime}(0)=0$.
10. Solve the IVP: $2 y^{\prime \prime}+y^{\prime}+2 y=\delta_{5}(t), y(0)=0, y^{\prime}(0)=0$.
11. Solve the IVP: $y^{\prime \prime}+2 y^{\prime}+2 y=\delta_{\pi}(t), y(0)=1, y^{\prime}(0)=0$.
