1. 10 points Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}5 & -2 \\ 1 & 2\end{array}\right]$.
(a) Find the eigenvalues λ_{1} and λ_{2} of the matrix A.
(b) Find (non-zero) eigenvectors V_{1} and V_{2} corresponding to each eigenvalue.
(c) Find the general solution $Y=Y(t)$ of the given system.
(d) Find the solution $Y=Y(t)$ with initial condition $Y(0)=\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
2. 10 points The matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]$ has eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=3$, with corresponding eigenvectors $V_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Sketch the phase portrait for the linear system $Y^{\prime}=A Y$, indicating the straight-line solutions, and at least 4 other solution curves. What kind of equilibrium point is the origin?
3. 10 points Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$.
(a) Find the eigenvalues λ_{1} and λ_{2} of the matrix A.
(b) Find (non-zero) eigenvectors V_{1} and V_{2} corresponding to each eigenvalue.
(c) Find the general solution $Y=Y(t)$ of the given system.
(d) Sketch the phase portrait for the system. What are the equilibrium points?
4. 10 points Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$.
(a) It turns out that A has a single eigenvalue, λ. Compute this eigenvalue.
(b) Given the initial condition $V_{0}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, find the corresponding eigenvector V_{1} for the eigenvalue λ.
(c) Find the solution $Y=Y(t)$ with initial condition $Y(0)=V_{0}$.
