Ordinary Differential Equations Quiz 3

Fall 2008

1. 10 points Consider the linear system
$$Y' = AY$$
, with $A = \begin{bmatrix} 5 & -2 \\ 1 & 2 \end{bmatrix}$.

(a) Find the eigenvalues λ_1 and λ_2 of the matrix A.

(b) Find (non-zero) eigenvectors V_1 and V_2 corresponding to each eigenvalue.

(c) Find the general solution Y = Y(t) of the given system.

(d) Find the solution Y = Y(t) with initial condition $Y(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

2. 10 points The matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$ has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 3$, with corresponding eigenvectors $V_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $V_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Sketch the phase portrait for the linear system Y' = AY, indicating the straight-line solutions, and at least 4 other solution curves. What kind of equilibrium point is the origin?

- **3.** 10 points Consider the linear system Y' = AY, with $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$.
 - (a) Find the eigenvalues λ_1 and λ_2 of the matrix A.
 - (b) Find (non-zero) eigenvectors V_1 and V_2 corresponding to each eigenvalue.
 - (c) Find the general solution Y = Y(t) of the given system.
 - (d) Sketch the phase portrait for the system. What are the equilibrium points?

- **4.** 10 points Consider the linear system Y' = AY, with $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$.
 - (a) It turns out that A has a single eigenvalue, λ . Compute this eigenvalue.
 - (b) Given the initial condition $V_0 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, find the corresponding eigenvector V_1 for the eigenvalue λ .
 - (c) Find the solution Y = Y(t) with initial condition $Y(0) = V_0$.