1. $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}5 & -2 \\ 1 & 2\end{array}\right]$.
(a) Eigenvalues: $\quad \lambda_{1}=3, \lambda_{2}=4$.
(b) Eigenvectors: $\quad V_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(c) General solution: $\quad Y(t)=C_{1} e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+C_{2} e^{4 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
(d) Solution with $Y(0)=\left[\begin{array}{c}1 \\ -1\end{array}\right]: \quad Y(t)=-3 e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+2 e^{4 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
2. The matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]$ has eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=3$, with corresponding eigenvectors $V_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$.
The phase portrait consists of lines $L_{1}$ and $L_{2}$ through the vectors $V_{1}$ and $V_{2}$, with contraction on $L_{1}$ expansion on $L_{2}$, and other solution curves curving in the plane accordingly, coming from the direction of $L_{1}$ and going in the direction of $L_{2}$. The origin is a saddle point.
3. $Y^{\prime}=A Y$, with $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$.
(a) Eigenvalues: $\quad \lambda_{1}=0, \lambda_{2}=4$.
(b) Eigenvectors: $\quad V_{1}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(c) General solution: $\quad Y(t)=C_{1}\left[\begin{array}{c}1 \\ -2\end{array}\right]+C_{2} e^{4 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(d) The phase portrait consists of the line $L_{1}$ through the vector $V_{1}$ (the points on this line are precisely the equilibrium points), together with rays emanating from points on $L_{1}$, in a direction parallel to $V_{2}$, and pointing away from $L_{1}$.
4. $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right]$.
(a) Unique eigenvalue: $\quad \lambda=2$
(b) Let $V_{0}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. Corresponding eigenvector: $\quad V_{1}=(A-\lambda I) V_{0}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$.
(c) Solution with $Y(0)=V_{0}: \quad Y(t)=e^{2 t}\left[\begin{array}{c}-1 \\ 2\end{array}\right]+t e^{2 t}\left[\begin{array}{l}3 \\ 3\end{array}\right]$.
