Ordinary Differential Equations Solutions to Quiz 3

1. Y' = AY, with $A = \begin{bmatrix} 5 & -2 \\ 1 & 2 \end{bmatrix}$. (a) Eigenvalues: $\lambda_1 = 3, \lambda_2 = 4$. (b) Eigenvectors: $V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $V_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. (c) General solution: $Y(t) = C_1 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. (d) Solution with $Y(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$: $Y(t) = -3e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2e^{4t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

2. The matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$ has eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 3$, with corresponding eigenvectors $V_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $V_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

The phase portrait consists of lines L_1 and L_2 through the vectors V_1 and V_2 , with contraction on L_1 expansion on L_2 , and other solution curves curving in the plane accordingly, coming from the direction of L_1 and going in the direction of L_2 . The origin is a saddle point.

- **3.** Y' = AY, with $A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$. (a) Eigenvalues: $\lambda_1 = 0, \lambda_2 = 4$. (b) Eigenvectors: $V_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $V_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
 - (c) General solution: $Y(t) = C_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$
 - (d) The phase portrait consists of the line L_1 through the vector V_1 (the points on this line are precisely the equilibrium points), together with rays emanating from points on L_1 , in a direction parallel to V_2 , and pointing away from L_1 .

4. Y' = AY, with $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$. (a) Unique eigenvalue: $\lambda = 2$ (b) Let $V_0 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Corresponding eigenvector: $V_1 = (A - \lambda I)V_0 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$. (c) Solution with $Y(0) = V_0$: $Y(t) = e^{2t} \begin{bmatrix} -1 \\ 2 \end{bmatrix} + te^{2t} \begin{bmatrix} 3 \\ 3 \end{bmatrix}$.