Practice Quiz 3

1. Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}-2 & -3 \\ 1 & -6\end{array}\right]$.
(a) Find the eigenvalues λ_{1} and λ_{2} of the matrix A.
(b) Find (non-zero) eigenvectors V_{1} and V_{2} corresponding to each eigenvalue.
(c) Find the general solution $Y=Y(t)$ of the given system.
(d) Find the solution $Y=Y(t)$ with initial condition $Y(0)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$.
(e) Sketch the phase portrait for the system, indicating the straight-line solution(s), and several other solution curves, including the one found in part (d). What kind of equilibrium point is the origin?
2. Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$.
(a) Find the eigenvalues λ_{1} and λ_{2} of the matrix A.
(b) Find (non-zero) eigenvectors V_{1} and V_{2} corresponding to each eigenvalue.
(c) Find the general solution $Y=Y(t)$ of the given system.
(d) Find the solution $Y=Y(t)$ with initial condition $Y(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(e) Sketch the phase portrait for the system, indicating the straight-line solutions, and several other solution curves, including the one found in part (d). What kind of equilibrium point is the origin?
3. Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}4 & 2 \\ -1 & 1\end{array}\right]$.
(a) Find the eigenvalues λ_{1} and λ_{2} of the matrix A.
(b) Find (non-zero) eigenvectors V_{1} and V_{2} corresponding to each eigenvalue.
(c) Find the general solution $Y=Y(t)$ of the given system.
(d) Find the solution $Y=Y(t)$ with initial condition $Y(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(e) Sketch the phase portrait for the system, indicating the straight-line solutions, and several other solution curves, including the one found in part (d). What kind of equilibrium point is the origin?
4. Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}-2 & 1 \\ 2 & -1\end{array}\right]$.
(a) Find the eigenvalues λ_{1} and λ_{2} of the matrix A.
(b) Find (non-zero) eigenvectors V_{1} and V_{2} corresponding to each eigenvalue.
(c) Find the general solution $Y=Y(t)$ of the given system.
(d) Find the solution $Y=Y(t)$ with initial condition $Y(0)=\left[\begin{array}{l}3 \\ 3\end{array}\right]$.
(e) Sketch the phase portrait for the system, indicating the straight-line solutions, and several other solution curves, including the one found in part (d). What kind of equilibrium point is the origin?
5. Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}3 & 4 \\ -1 & -1\end{array}\right]$.
(a) It turns out that A has a single eigenvalue, λ. Compute this eigenvalue.
(b) Given an initial condition $V_{0}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$, find the corresponding eigenvector V_{1} for the eigenvalue λ.
(c) Find the general solution $Y=Y(t)$ of the given system.
(d) Find the solution $Y=Y(t)$ with initial condition $Y(0)=V_{0}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(e) Sketch the phase portrait for the system, indicating the straight-line solution, and several other solution curves, including the one found in part (d). What are the equilibrium solutions?
6. Let $A=\left[\begin{array}{cc}-1 & -2 \\ 4 & -5\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Based on your answer to part (a), describe in words the behavior of the solution Y to $Y^{\prime}=A Y$ if $Y(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. (Do NOT solve the differential equation.)
(c) What kind of equilibrium point is the origin?
7. Consider the linear system $Y^{\prime}=A Y$, with $A=\left[\begin{array}{cc}0 & 3 \\ -3 & 0\end{array}\right]$.
(a) Find the general solution $Y=Y(t)$.
(b) Find the solution $Y=Y(t)$ with initial condition $Y(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(c) Sketch the $x(t)$ - and $y(t)$-graphs of this particular solution.
(d) What kind of equilibrium point is the origin?
