Practice Quiz 2

1. Convert the following second order D.E. to a system of first order D.E.'s. DO NOT TRY TO SOLVE the system. All you have to do is write out the first order system.

$$
y^{\prime \prime}(t)=7 y^{\prime}(t)+2 y(t)+3 y^{2}(t)
$$

2. The second order D.E. $y^{\prime \prime}(t)+9 y(t)=0$ has the general solution $y(t)=C_{1} \cos (\beta t)+C_{2} \sin (\beta t)$.
(a) Find β.
(b) Find C_{1} and C_{2} so that y satisfies the initial condition $y(0)=4, y^{\prime}(0)=5$.
3. Solve the initial value problem $y^{\prime \prime}+7 y^{\prime}+12 y=0, y(0)=3 y^{\prime}(0)=-7$.
4. Solve the initial value problem $4 y^{\prime \prime}-12 y^{\prime}+9 y=0, y(0)=9 y^{\prime}(0)=8$.
5. Solve the following (partially decoupled) system:

$$
\frac{d x}{d t}=3 x, \quad \frac{d y}{d t}=-2 x+5 y
$$

6. Write the following system of first order linear equations in matrix form:

$$
\frac{d y_{1}}{d t}=3 y_{1}-7 y_{2}, \quad \frac{d y_{2}}{d t}=5 y_{1}+y_{2}
$$

What are the equilibrium solution(s)?
7. If $X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is a solution of $X^{\prime}=A X$ where $A=\left[\begin{array}{cc}6 & -4 \\ 10 & 2\end{array}\right]$, give x_{1}^{\prime} and x_{2}^{\prime} at the point where $x_{1}=5$ and $x_{2}=-3$.
8. Two of the three vector-valued functions

$$
U(t)=e^{-2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad V(t)=e^{2 t}\left[\begin{array}{c}
-2 \\
1
\end{array}\right], \quad W(t)=e^{3 t}\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

are solutions to the system $Y^{\prime}=B Y$ where $B=\left[\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right]$.
(a) Determine which two functions are solutions
(b) Using the two functions which are solutions, find a third solution Y satisfying the initial condition $Y(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
9. The system $Y^{\prime}=\left[\begin{array}{cc}-4 & 1 \\ 2 & -3\end{array}\right] Y$ has solutions $Y_{1}(t)=e^{-5 t}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $Y_{2}(t)=e^{-2 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Find the solution $Y(t)$ satisfying the initial value $Y(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

