1. Solve the initial value problem $4 y^{\prime \prime}-12 y^{\prime}+9 y=0, y(0)=9, y^{\prime}(0)=8$.

$$
y(t)=9 e^{3 t / 2}-\frac{11}{2} t e^{3 t / 2}
$$

2. If $X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is a solution of $X^{\prime}=A X$ where $A=\left[\begin{array}{cc}6 & -4 \\ 10 & 2\end{array}\right]$, give x_{1}^{\prime} and x_{2}^{\prime} at the point where $x_{1}=5$ and $x_{2}=-3$.

$$
X^{\prime}=\left[\begin{array}{l}
42 \\
44
\end{array}\right]
$$

3. Two of the three vector-valued functions

$$
U(t)=e^{-2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad V(t)=e^{2 t}\left[\begin{array}{c}
-2 \\
1
\end{array}\right], \quad W(t)=e^{3 t}\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

are solutions to the system $Y^{\prime}=B Y$ where $B=\left[\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right]$.
(a) Determine which two functions are solutions.

$$
\begin{array}{cl}
U^{\prime}=-2 U, & B U(t)=e^{-2 t}\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=e^{-2 t}\left[\begin{array}{c}
-2 \\
2
\end{array}\right]=-2 U . \quad U \text { solves. } \\
V^{\prime}=2 V, & B V(t)=e^{2 t}\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
0 \\
-3
\end{array}\right] \neq V^{\prime} . V \text { does not solve. } \\
W^{\prime}=3 W, & B W(t)=e^{3 t}\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
4 \\
1
\end{array}\right]=e^{3 t}\left[\begin{array}{c}
12 \\
3
\end{array}\right]=3 W . W \text { solves. }
\end{array}
$$

The solutions are: U and W.
(b) Using the two functions which are solutions, find a third solution Y satisfying the initial condition $Y(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
The solution will be that linear combination $Y=k_{1} U+k_{2} W$ of U and W which has the specified initial conditions. At $t=0$ this says

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=Y(0)=k_{1} U(0)+k_{2} W(0)=k_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+k_{2}\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\left[\begin{array}{c}
k_{1}+4 k_{2} \\
-k_{1}+k_{2}
\end{array}\right]
$$

Thus $k_{1}+4 k_{2}=0$ and $-k_{1}+k_{2}=1$. Solving this system gives $k_{1}=-4 / 5$ and $k_{2}=1 / 5$. Thus the solution is

$$
Y(t)=-(4 / 5) U(t)+(1 / 5) W(t)=\frac{1}{5}\left[\begin{array}{c}
-4 e^{-2 t}+4 e^{3 t} \\
4 e^{-2 t}+e^{3 t}
\end{array}\right]
$$

