Quiz 1

1. Solve: $\frac{d y}{d t}=t+t y^{2}, y(0)=1$. For which values of t is the solution defined?

$$
\begin{gathered}
\frac{d y}{d t}=t\left(1+y^{2}\right) \longrightarrow \int \frac{d y}{1+y^{2}}=\int t d t+C \longrightarrow \arctan y=\frac{t^{2}}{2}+C \longrightarrow y=\tan \left(\frac{t^{2}}{2}+C\right) \\
y(0)=1 \longrightarrow \tan (C)=1 \longrightarrow C=\frac{\pi}{4}
\end{gathered}
$$

The solution curve is defined on an interval around $t=0$, as long as $\frac{t^{2}}{2}+\frac{\pi}{4} \neq \frac{\pi}{2}$, that is, $t^{2} \neq \frac{\pi}{2}$. Hence,

$$
y(t)=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right), \quad \text { defined for }-\sqrt{\frac{\pi}{2}}<t<\sqrt{\frac{\pi}{2}}
$$

3. Solve: $\frac{d y}{d t}+\frac{3}{t} y=\frac{1}{t^{4}}, y(1)=1$. For which values of t is the solution defined?

$$
\begin{aligned}
& \mu(t)=e^{\int \frac{3}{t} d t}=e^{3 \ln t}=t^{3} \\
& y(t)=\frac{1}{t^{3}}\left(\int t^{3} \cdot \frac{1}{t^{4}} d t+C\right)=\frac{1}{t^{3}}\left(\int \frac{1}{t} d t+C\right)=\frac{1}{t^{3}}(\ln t+C) \\
& y(1)=1 \longrightarrow C=1
\end{aligned}
$$

The solution curve is defined on an interval around $t=1$, as long as $t \neq 0$. Hence, we must have $t>0$. (This, by the way, justifies not putting absolute value forln $|t|$ in the above.) Hence,

$$
y(t)=\frac{1+\ln t}{t^{3}}, \quad \text { defined for } t>0
$$

4. A 100 gallon tank initially contains 20 gallons of pure water. A salt water solution containing 4 pounds of salt per gallon enters the tank at 7 gallons per minute, and the mixture kept uniform by stirring, flows out at the rate of 5 gallons per minute.
(a) How many gallons of salt water solution are there after t minutes?

$$
V(t)=20+7 t-2 t=20+2 t
$$

(b) When will the tank be full?

$$
V(t)=100 \longrightarrow t=40
$$

(c) Write down the initial value problem that describes the quantity of salt, $S(t) \mathrm{kg}$, at time t.

$$
\frac{d S}{d t}=28-\frac{5}{20+2 t} S, \quad S(0)=0
$$

