1. Solve: $\frac{d y}{d t}-\frac{2}{t} y=t^{2} \sin t$.
2. Solve: $(t+1) \frac{d y}{d t}=1+y^{2}$.
3. Solve: $\frac{d x}{d t}+\frac{1}{2 t} x=\frac{1}{2}$.
4. Solve: $\frac{d y}{d t}-t y=t y^{3}$.
5. Solve: $\quad \frac{d x}{d t}+\frac{2}{t} x=\frac{1}{t^{3}}+3, \quad x(1)=3$.
6. Solve: $\frac{d y}{d t}+\frac{3}{t} y=2, \quad y(2)=1$.
7. Solve: $\frac{d y}{d t}=\frac{e^{2 t}}{2 y}, \quad y(0)=-1$.
8. Given the autonomous differential equation $\frac{d y}{d t}=(y-1)^{2}(y+3)^{3}$.
(a) Sketch the phase line.
(b) Identify the equilibrium points as sinks, sources, or nodes.
(c) For each of the following initial conditions, sketch the corresponding curve in the phase plane.

$$
y(0)=-4, \quad y(0)=0, \quad y(1)=0, \quad y(0)=2
$$

9. A 300 gallon tank initially contains 100 gallons of pure water. A salt water solution containing 3 pounds of salt per gallon enters the tank at 8 gallons per minute, and the mixture is removed at the rate of 6 gallons per minute. How many pounds of salt is in the tank when the tank is full?
10. A tank initially contains 20 kg of salt dissolved in 200 liters of water. A brine solution containing 3 kg of salt/liter flows into the tank at the rate of 2 liters/minute. The mixture, kept uniform by stirring, flows out at the rate of 4 liters/minute.
(a) Write down the initial value problem that describes the quantity of salt, $S(t) \mathrm{kg}$, at time t minutes.
(b) Find $S(t)$.
(c) What is the quantity of salt after 30 minutes?
11. A microcosm contains a population of microorganisms whose birth and death rates are proportional to the square root of the population. Initially there is just 1 microorganism, but after 5 hours there are 4 of them.
(a) Write down the initial value problem that describes the population of microorganisms, $P(t)$, at time t hours.
(b) Find $P(t)$.
(c) When will the microorganisms take over the microcosm?
