1. $\frac{d y}{d t}-\frac{2}{t} y=t^{2} \sin t \quad \longrightarrow \quad y(t)=t^{2}(k-\cos t)$, for $t \neq 0$
2. $(t+1) \frac{d y}{d t}=1+y^{2} \quad \longrightarrow \quad y(t)=\tan (\ln |1+t|+k)$, for $t \neq-1$
3. $\frac{d x}{d t}+\frac{1}{2 t} x=\frac{1}{2} \quad \longrightarrow \quad y(t)=\frac{t}{3}+\frac{k}{\sqrt{t}}$, for $t>0$
4. $\frac{d y}{d t}-t y=t y^{3} \quad \longrightarrow \quad y(t)= \pm \frac{1}{\sqrt{k e^{-t^{2}}-1}}$, for $t \neq \pm \sqrt{\ln k}$ and $k>0$
5. $\frac{d x}{d t}+\frac{2}{t} x=\frac{1}{t^{3}}+3, \quad x(1)=3 \quad \longrightarrow \quad x(t)=t+\frac{2+\ln t}{t^{2}}$, for $t>0$
6. $\frac{d y}{d t}+\frac{3}{t} y=2, \quad y(2)=1 \quad \longrightarrow \quad y(t)=\frac{t}{2}$, for $t>0$
7. $\frac{d y}{d t}=\frac{e^{2 t}}{2 y}, \quad y(0)=-1 \quad \longrightarrow \quad y(t)=-\sqrt{\frac{e^{2 t}+1}{2}}$, for all t
8. A 300 gallon tank initially contains 100 gallons of pure water. A salt water solution containing 3 pounds of salt per gallon enters the tank at 8 gallons per minute, and the mixture is removed at the rate of 6 gallons per minute. How many pounds of salt is in the tank when the tank is full?

Let $S(t)$ be the quantity of salt (in pounds) at time t. Then:

$$
\frac{d S}{d t}+\frac{3}{50+t} S=24, S(0)=0 \longrightarrow S(t)=\frac{6 t(100+t)\left(5000+100 t+t^{2}\right)}{(50+t)^{3}} \longrightarrow S(100)=\frac{8000}{9}
$$

10. A tank initially contains 20 kg of salt dissolved in 200 liters of water. A brine solution containing 3 kg of salt/liter flows into the tank at the rate of 2 liters/minute. The mixture, kept uniform by stirring, flows out at the rate of 4 liters/minute.

Let $S(t)$ be the quantity of salt (in kg) at time t. Then:

$$
\frac{d S}{d t}+\frac{2}{100-t} S=6, S(0)=20 \longrightarrow S(t)=\frac{(100-t)(100+29 t)}{500} \longrightarrow S(30) \simeq \frac{679}{5}
$$

11. A microcosm contains a population of microorganisms whose birth and death rates are proportional to the square root of the population. Initially there is just 1 microorganism, but after 5 hours there are 4 of them.

Let $P(t)$ be the population at time t. Then:

$$
\frac{d P}{d t}=k \sqrt{P} \cdot P, P(0)=1 \longrightarrow P(t)=\frac{4}{(k t-2)^{2}}
$$

$P(5)=4 \longrightarrow k=\frac{1}{5}$ or $k=\frac{3}{5}$, but only the former makes sense (why?)
thus, $P(t)=\frac{100}{(t-10)^{2}}$
since $\lim _{t \rightarrow 10^{-}} P(t)=\infty$, the microorganisms take over the microcosm at time $t=10$

