
MTH U345 Ordinary Differential Equations Fall 2008

Lab 1: Partial solution

Exercise 2(d) Consider the initial value problem

dy/dt = y(y − 2), y(0) = 3.

What happens to y(t) as t increases? Can you show that y(t) escapes to infinity?

First, solve the ODE by separating variables, and integrating both sides using partial fractions:
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Now use the initial condition y(0) = 3 to figure out both the constant K and the sign:
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Notice that y(t) is defined as long as the denominator does not vanish. The denominator 3−e2t

equals 0 precisely when e2t = 3, i.e.,
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Notice that the solution curve y(t) = 6
3−e2t is only defined for t < ln 3

2 . As t approaches this
limiting value from the left, y(t) escapes to infinity:
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