Lab 1: Partial solution

Exercise 2(d) Consider the initial value problem

$$
d y / d t=y(y-2), \quad y(0)=3
$$

What happens to $y(t)$ as t increases? Can you show that $y(t)$ escapes to infinity?
First, solve the ODE by separating variables, and integrating both sides using partial fractions:

$$
\begin{aligned}
\frac{d y}{d t} & =y(y-2) \\
\int \frac{d y}{y(y-2)} & =\int d t+C \\
\frac{1}{2} \int \frac{d y}{y-2}-\frac{1}{2} \int \frac{d y}{y} & =t+C \\
\frac{1}{2} \ln \left|\frac{y-2}{y}\right| & =t+C \\
\left|\frac{y-2}{y}\right| & =e^{2 t+2 C} \\
\frac{y-2}{y} & = \pm K e^{2 t} \quad \text { with } K=e^{2 C}>0
\end{aligned}
$$

Now use the initial condition $y(0)=3$ to figure out both the constant K and the sign:

$$
\begin{aligned}
\frac{3-2}{3} & = \pm K \cdot 1 \\
K & =\frac{1}{3} \quad \text { and the sign is }+
\end{aligned}
$$

Thus

$$
\begin{gathered}
y-2=\frac{1}{3} y e^{2 t} \\
\left(1-\frac{1}{3} e^{2 t}\right) y=2 \\
y(t)=\frac{6}{3-e^{2 t}}
\end{gathered}
$$

Notice that $y(t)$ is defined as long as the denominator does not vanish. The denominator $3-e^{2 t}$ equals 0 precisely when $e^{2 t}=3$, i.e.,

$$
t=\frac{\ln 3}{2} \simeq 0.5493
$$

Notice that the solution curve $y(t)=\frac{6}{3-e^{2 t}}$ is only defined for $t<\frac{\ln 3}{2}$. As t approaches this limiting value from the left, $y(t)$ escapes to infinity:

$$
\lim _{t \rightarrow \frac{\ln }{2}^{-}}=+\infty
$$

