LONG EXACT SEQUENCE IN HOMOLOGY

Ryan Keleti rkeleti220gmail.com

Here I will give an overview of the long exact sequence in homology. We could work in an arbitrary abelian category A, but we take A to be the category Mod_R of R-modules for a ring R.

First we set up what we want to prove. Here we use the notation X_{\bullet} to denote a chain complex $\{X_n\}_{n \in \mathbb{Z}}$ with boundary maps $d^X = d_n^X : X_n \to X_{n-1}$.

Theorem 0.1 (Long exact sequence in homology). *For a short exact sequence of chain complexes (each in* Mod_R)

$$0 \longrightarrow A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet} \longrightarrow 0,$$

there exist natural 'connecting homomorphisms'

$$H_n(C_{\bullet}) \stackrel{\mathfrak{d}}{\longrightarrow} H_{n-1}(A_{\bullet})$$

such that

$$\cdots \xrightarrow{\mathfrak{d}} H_n(A_{\bullet}) \xrightarrow{f_*} H_n(B_{\bullet}) \xrightarrow{g_*} H_n(C_{\bullet}) \xrightarrow{\mathfrak{d}}$$
$$\xrightarrow{\mathfrak{d}} H_{n-1}(A_{\bullet}) \xrightarrow{f_*} H_{n-1}(B_{\bullet}) \xrightarrow{g_*} H_{n-1}(C_{\bullet}) \xrightarrow{\mathfrak{d}} \cdots$$

is an exact sequence.

First, we need to define what ∂ is! We use the Snake Lemma, a proof of which we do not provide here (to quote Paolo Aluffi, proving the Snake Lemma is something that should not be done in public).

Lemma 0.2 (Snake Lemma). *For a commutative diagram (in* Mod_R)

$$\begin{array}{ccc} A & \longrightarrow B & \stackrel{p}{\longrightarrow} C & \longrightarrow 0 \\ a & b & c \\ 0 & \longrightarrow A' & \stackrel{i}{\longrightarrow} B' & \longrightarrow C' \end{array}$$

in which the top and bottom rows are exact, there exists an exact sequence

 $\ker a \longrightarrow \ker b \longrightarrow \ker c \stackrel{\eth}{\longrightarrow} \operatorname{coker} a \longrightarrow \operatorname{coker} b \longrightarrow \operatorname{coker} c,$

with ∂ a (well-defined) homomorphism

$$\partial(\mathbf{x}) := (\mathfrak{i}^{-1} \circ \mathfrak{b} \circ p^{-1})(\mathbf{x}), \quad \forall \mathbf{x} \in \ker \mathfrak{c}.$$

Now we apply the Snake Lemma! Take the commutative diagram

We must verify that the top and bottom rows are exact, which follows from the diagram

Back to the diagram (\star) , we have that

$$\begin{split} & \ker(A_n/\operatorname{im} d_{n+1}^A \to \ker d_n^A) = H_n(A), \\ & \operatorname{coker}(A_n/\operatorname{im} d_{n+1}^A \to \ker d_n^A) = H_{n-1}(A), \end{split}$$

and similarly for the other two columns. Applying the Snake Lemma gives an exact sequence

$$H_{n}(A_{\bullet}) \xrightarrow{f_{*}} H_{n}(B_{\bullet}) \xrightarrow{g_{*}} H_{n}(C_{\bullet}) \xrightarrow{\mathfrak{d}} H_{n-1}(A_{\bullet}) \xrightarrow{f_{*}} H_{n-1}(B_{\bullet}) \xrightarrow{g_{*}} H_{n-1}(C_{\bullet}).$$

Via a 'pasting' argument, we obtain the long exact sequence claimed in the Theorem.

Finally, we have naturality.

Proposition 0.3 (Naturality). Given a commutative diagram of short exact sequences of chain complexes (each in Mod_R)

there is a commutative diagram of long exact sequences

Proof. As H_n is a functor, the leftmost two squares commute. Next, for $z \in H_n(C_{\bullet})$ represented by $c \in C_n$, its image $z' \in H_n(C_{\bullet})$ is represented by the image c' of c. If $b \in B_n$ lifts c, its image in B'_n lifts c'. Hence $\partial z' \in H_{n-1}(A'_{\bullet})$ is represented by the image of $d^B_n b \in B_{n-1}$, as $d^B_n b \in \text{im } d^A_{n-1}$. As such, $d^B_n B$ is a representative of $\partial z \in H_{n-1}(A_{\bullet})$. Therefore $\partial z'$ is the image of ∂z , and the rightmost square commutes.

References

[1] Charles A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, 1994.