Prof. Alexandru Suciu TOPOLOGY

MIDTERM EXAM

- **1.** Consider the following two topologies on \mathbb{R}^2 :
 - (i) The Zariski topology, \mathcal{T}_1 , where a base of open sets is formed by the complements of zero sets of polynomials in two variables.
 - (ii) The topology \mathcal{T}_2 , the weakest topology where all straight lines are closed sets. Show that $(\mathbb{R}^2, \mathcal{T}_1)$ and $(\mathbb{R}^2, \mathcal{T}_2)$ are not homeomorphic.
- 2. Define a topology \mathcal{T} on the closed interval X = [-1, 1] by declaring a set to be open if it either does not contain the point 0, or it does contain (-1, 1).
 - (a) Verify that \mathcal{T} is indeed a topology.
 - (b) What are the limit points of X?
 - (c) Is X a T_0 space? (I.e., given a pair of distinct points in X, does at least one of them have a neighborhood not containing the other?)
 - (d) Is X a T_1 space? (I.e., given a pair of distinct points in X, does each one of them have a neighborhood not containing the other?)
 - (e) Show that X is compact.
 - (f) Show that X locally path-connected.
- **3.** Prove or disprove the following:
 - (a) If X and Y are path-connected, then $X \times Y$ is path-connected.
 - (b) If $A \subset X$ is path-connected, then A is path-connected.
 - (c) If X is locally path-connected, and $A \subset X$, then A is locally path-connected.
 - (d) If X is path-connected, and $f: X \to Y$ is continuous, then f(X) is path-connected.
 - (e) If X is locally path-connected, and $f: X \to Y$ is continuous, then f(X) is locally path-connected.

- 4. Let (X, \mathcal{T}) be a topological space. Show that the following conditions are equivalent:
 - (a) X is locally connected.
 - (b) The family of open connected subsets of X forms a basis for \mathcal{T} .
- 5. Let $f: X \to Y$ be a continuous map. We say that f is proper if $f^{-1}(K)$ is compact, for every compact subset $K \subset Y$. We also say that f is perfect if f is surjective, closed, and $f^{-1}(\{y\})$ is compact for every point $y \in Y$.
 - (a) Show that every continuous map from a compact space to a Hausdorff space is both proper and closed.
 - (b) Show that every homeomorphism is a perfect map. Conversely, show that every injective perfect map is a homeomorphism.
 - (c) Give an example of a perfect map which is not open.
- **6.** Let A be a subspace of a topological space X. A retraction of X onto A is a continuous map $r: X \to A$ such that r(a) = a for all $a \in A$. If such a map exists, we say that A is a retract of X.
 - (a) Prove the following: If X is Hausdorff and A is a retract of X, then A is closed.
 - (b) By the above, the open interval (0,1) is *not* a retract of the real line \mathbb{R} . Nevertheless, show that the closed interval [0,1] is a retract of \mathbb{R} .
- **7.** Let $f: X \to Y$ and $g: X \to Y$ be two continuous maps. Suppose Y is a Hausdorff space, and that there is a dense subset $D \subset X$ such that f(x) = g(x) for all $x \in D$. Show that f(x) = g(x) for all $x \in X$.
- 8. Let (X, d) be a metric space, and let $f: X \to X$ be a continuous function which has no fixed points.
 - (a) If X is compact, show that there is a real number $\epsilon > 0$ such that $d(x, f(x)) > \epsilon$, for all $x \in X$.
 - (b) Show that the conclusion in (a) is false if X is not assumed to be compact.