MATH 4565

Prof. Alexandru Suciu TOPOLOGY

FINAL EXAM

- **1.** Let X and Y be topological spaces, and $pr_1: X \times Y \to X$ the first-coordinate projection map. Prove or disprove the following assertions.
 - (a) pr_1 is a continuous map.
 - (b) pr_1 is an open map.
 - (c) pr_1 is a closed map.
 - (d) pr_1 is a quotient map.

2. Let $X = \{1, 2, 3, 4\}$, endowed with the topology $\mathcal{T} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}.$ Let $Y = \{a, b, c\}$, and $f: X \to Y$ the function sending $1 \mapsto a, 2 \mapsto b, 3 \mapsto b, 4 \mapsto c$. Find the quotient topology on Y defined by the map f. **3.** Let X be a topological space. Suppose X contains an infinite, closed, discrete subspace. Show that X is *not* compact.

4. Let $f: X \to Y$ be a quotient map. Suppose Y is connected, and, for each $y \in Y$, the subspace $f^{-1}(\{y\})$ is connected. Show that X is also connected.

5. A subspace $A \subset X$ is called a *deformation retract* of X if there is a retraction $r: X \to A$ with the property that $i \circ r \simeq id_X$. Prove the following: if A is a retract of a contractible space X, then A is a deformation retraction of X.

- **6.** Let f and g be two paths in $\mathbb{R}^2 \setminus \{(0,0)\}$.
 - (a) Show that f is homotopic to g.
 - (b) Suppose f and g both start at (-1,0) and end at (0,1). Is f always path-homotopic to g?

7. Let $p: E \to B$ be a covering map. Suppose *E* is path-connected, and $\pi_1(B, b_0) = 0$. Show that *p* is a homeomorphism.

- 8. Let $X = S^1 \bigvee S^1$ be the union of two circles at the basepoint x_0 , let a and b be loops at x_0 going around once each of those circles. Draw 4 non-equivalent, connected 3-fold covers of X. In each case:
 - (a) Indicate the lifts of the base curves.
 - (b) Determine the permutations associated to the loops a and b by the lifting correspondence.
 - (c) Indicate whether the cover is regular or not.