A problem on prime order normal subgroups

Problem. Let G be a finite group and let N be a normal subgroup of prime order p with $\operatorname{gcd}(|G|, p-1)=1$. Show that $N \subseteq Z(G)$.

Proof. Since $|N|=p>1$, there is an element $x \in N$ with $x \neq e$. Since N is a subgroup, the whole cyclic subgroup generated by x must be contained in N, that is, $\langle x\rangle \leq N$. Hence, by Lagrange's theorem, $|\langle x\rangle|$ must divide $|N|=p$. Since p is prime and $|\langle x\rangle| \neq 1$ (because $x \neq e$), we must have $|\langle x\rangle|=p$. Therefore,

$$
\begin{equation*}
N=\langle x\rangle=\left\{e, x, x^{2}, \ldots, x^{p-1}\right\} . \tag{1}
\end{equation*}
$$

Now, since N is a normal subgroup, N is a union of conjugacy classes (in G). One such conjugacy class is $\{e\}$. Let

$$
\begin{equation*}
C:=\mathrm{Cl}(x)=\left\{g x g^{-1}: g \in G\right\} \tag{2}
\end{equation*}
$$

be the conjugacy class of x in G. Then $x \in C \subset N$, but $e \notin C$. Thus,

$$
\begin{equation*}
1 \leq|C| \leq p-1 \tag{3}
\end{equation*}
$$

Claim. $|C|=1$.
Proof of Claim. Suppose $|C|>1$. Then there is a $y \in C$ with $y \neq x$. But $C \subset N=$ $\langle x\rangle$, and so $y=x^{k}$, for some $k \geq 0$ with $k \neq 0$ (since $\left.y \neq e\right), k \neq 1$ (since $y \neq x$), and $k<p$ (since $\operatorname{ord}(x)=|\langle x\rangle|=p)$. To sum up, there is an element $g \in G$ and an integer k with $1<k<p$ such that

$$
\begin{equation*}
g x g^{-1}=x^{k} . \tag{4}
\end{equation*}
$$

Conjugating again by g, we get $g^{2} x g^{-2}=g x^{k} g^{-1}=\left(g x g^{-1}\right)^{k}=\left(x^{k}\right)^{k}=x^{k^{2}}$. Proceeding in like manner, we get $g^{\ell} x g^{-\ell}=x^{k^{\ell}}$, for all $\ell \geq 0$. Hence, all these elements are conjugate to x, i.e.,

$$
\begin{equation*}
\left\{x, x^{k}, x^{k^{2}}, \ldots, x^{k^{p-2}}\right\} \subseteq C \tag{5}
\end{equation*}
$$

Now note that all the elements in the list on the left side of (5) are distinct, since $\operatorname{ord}\left(x^{k}\right)=p$. But there are $p-1$ elements in this list, and so $p-1 \leq|C|$. Since we also know from (3) that $|C| \leq p-1$, we infer that

$$
\begin{equation*}
|C|=p-1 \tag{6}
\end{equation*}
$$

On the other hand, we also know from the theory leading to the Class Equation that C is in bijection with $G / C(x)$, and thus, by Lagrange's Theorem,

$$
\begin{equation*}
|C|||G| . \tag{7}
\end{equation*}
$$

Putting together (6) and (7), we conclude that $|C|$ divides both $|G|$ and $p-1$, and thus $|C|$ divides the gcd of $|G|$ and $p-1$. But, by the hypothesis of the problem, $\operatorname{gcd}(|G|, p-1)=1$. This contradicts our supposition that $|C|>1$, and so the claim is proved.

From the claim just proved, we get that $\mathrm{Cl}(x)=\{x\}$, which is equivalent to $x \in$ $Z(G)$. Since $Z(G)$ is a subgroup of G, we must also have $\langle x\rangle \subset Z(G)$. But we also know that $N=\langle x\rangle$, and so we have proved that $N \subset Z(G)$.

