Prof. Alexandru Suciu

MATH 3175

Group Theory

A problem on prime order normal subgroups

Problem. Let G be a finite group and let N be a normal subgroup of prime order p with gcd(|G|, p-1) = 1. Show that $N \subseteq Z(G)$.

Proof. Since |N| = p > 1, there is an element $x \in N$ with $x \neq e$. Since N is a subgroup, the whole cyclic subgroup generated by x must be contained in N, that is, $\langle x \rangle \leq N$. Hence, by Lagrange's theorem, $|\langle x \rangle|$ must divide |N| = p. Since p is prime and $|\langle x \rangle| \neq 1$ (because $x \neq e$), we must have $|\langle x \rangle| = p$. Therefore,

(1)
$$N = \langle x \rangle = \{e, x, x^2, \dots, x^{p-1}\}.$$

Now, since N is a normal subgroup, N is a union of conjugacy classes (in G). One such conjugacy class is $\{e\}$. Let

(2)
$$C \coloneqq \operatorname{Cl}(x) = \{gxg^{-1} : g \in G\}$$

be the conjugacy class of x in G. Then $x \in C \subset N$, but $e \notin C$. Thus,

$$(3) 1 \le |C| \le p-1$$

Claim. |C| = 1.

Proof of Claim. Suppose |C| > 1. Then there is a $y \in C$ with $y \neq x$. But $C \subset N = \langle x \rangle$, and so $y = x^k$, for some $k \ge 0$ with $k \ne 0$ (since $y \ne e$), $k \ne 1$ (since $y \ne x$), and k < p (since $\operatorname{ord}(x) = |\langle x \rangle| = p$). To sum up, there is an element $g \in G$ and an integer k with 1 < k < p such that

$$gxg^{-1} = x^k.$$

Conjugating again by g, we get $g^2 x g^{-2} = g x^k g^{-1} = (g x g^{-1})^k = (x^k)^k = x^{k^2}$. Proceeding in like manner, we get $g^{\ell} x g^{-\ell} = x^{k^{\ell}}$, for all $\ell \ge 0$. Hence, all these elements are conjugate to x, i.e.,

(5)
$$\{x, x^k, x^{k^2}, \dots, x^{k^{p-2}}\} \subseteq C.$$

Now note that all the elements in the list on the left side of (5) are distinct, since $\operatorname{ord}(x^k) = p$. But there are p-1 elements in this list, and so $p-1 \leq |C|$. Since we also know from (3) that $|C| \leq p-1$, we infer that

$$|C| = p - 1.$$

On the other hand, we also know from the theory leading to the Class Equation that C is in bijection with G/C(x), and thus, by Lagrange's Theorem,

$$(7) |C| | |G|.$$

Putting together (6) and (7), we conclude that |C| divides both |G| and p-1, and thus |C| divides the gcd of |G| and p-1. But, by the hypothesis of the problem, gcd(|G|, p-1) = 1. This contradicts our supposition that |C| > 1, and so the claim is proved.

From the claim just proved, we get that $Cl(x) = \{x\}$, which is equivalent to $x \in Z(G)$. Since Z(G) is a subgroup of G, we must also have $\langle x \rangle \subset Z(G)$. But we also know that $N = \langle x \rangle$, and so we have proved that $N \subset Z(G)$.