1. Prove, by comparing orders of elements, that the following pairs of groups are not isomorphic:
(i) $\mathbb{Z}_{8} \times \mathbb{Z}_{8}$ and $\mathbb{Z}_{16} \times \mathbb{Z}_{4}$.
(ii) $\mathbb{Z}_{9} \times \mathbb{Z}_{9} \times \mathbb{Z}_{3}$ and $\mathbb{Z}_{27} \times \mathbb{Z}_{9}$.
2. Describe a specific isomorphism $\varphi: \mathbb{Z}_{6} \times \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{30}$.
3. Describe a specific isomorphism $\psi: \mathbb{Z}_{16}^{\times} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
4. How many elements of order 6 are there in $\mathbb{Z}_{6} \times \mathbb{Z}_{9}$?
5. How many elements of order 25 are there in $\mathbb{Z}_{5} \times \mathbb{Z}_{25}$?
6. Let p be a prime. Determine the number of elements of order p in $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{2}}$.
7. Let $G=S_{3} \times \mathbb{Z}_{5}$. What are all possible orders of elements in G ? Prove that G is not cyclic.
8. Let H be set of all 2×2 matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$, with $a, b, d \in \mathbb{R}$ and $a d \neq 0$.
(i) Show that H is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.
(ii) Is H a normal subgroup of $\mathrm{GL}_{2}(\mathbb{R})$?
9. Let H be set of all 2×2 matrices of the form $\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$, with $a, c, d \in \mathbb{Z}$ and $a d= \pm 1$.
(i) Show that H is a subgroup of $\mathrm{GL}_{2}(\mathbb{Z})$.
(ii) Is H a normal subgroup of $\mathrm{GL}_{2}(\mathbb{Z})$?
10. Let $H=\{(1),(12)(34)\}$.
(i) Show that H is a subgroup of A_{4}.
(ii) What is the index of H in A_{4} ?
(iii) Is H a normal subgroup of A_{4} ?
11. Let $G=\mathbb{Z}_{32}^{\times}$, and $H=\{1,31\}$. Show that the quotient group G / H is isomorphic to \mathbb{Z}_{8}.
12. Let $G=\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}^{\times}$, and consider the subgroups $H=\langle(2,3)\rangle$ and $K=\langle(2,1)\rangle$.
(i) List the elements of G / H, and compute the Cayley table for this group. What is the isomorphism type of G / H ?
(ii) List the elements of G / K, and compute the Cayley table for this group. What is the isomorphism type of G / K ?
(iii) Are the groups G / H and G / K isomorphic?
13. Let $G=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$, and consider the subgroups $H=\{(0,0),(2,0),(0,2),(2,2)\}$ and $K=\langle(1,2)\rangle$. Identify the following groups (as direct products of cyclic groups of prime order):
(i) H and G / H.
(ii) K and G / K.
14. Give an example of a group G and a normal subgroup $H \triangleleft G$ such that both H and G / H are abelian, yet G is not abelian.
15. Let \mathbb{Z} be the additive group of integers, and let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function given by $f(x)=8 x$.
(i) Show that f is a homomorphism.
(ii) Find $\operatorname{ker}(f)$.
(iii) Find im (f).
16. Let $\varphi: G \rightarrow H$ and $\psi: H \rightarrow K$ be two homomorphisms.
(i) Show that $\psi \circ \varphi: G \rightarrow K$ is a homomorphism.
(ii) Show that $\operatorname{ker}(\varphi)$ is a normal subgroup of $\operatorname{ker}(\psi \circ \varphi)$.
17. Let G and H be two groups, and consider the map $p: G \times H \rightarrow H$ given by $p(g, h)=h$.
(i) Show that p is a homomorphism.
(ii) What is $\operatorname{ker}(p)$? What is $\operatorname{im}(p)$?
(iii) What does the First Isomorphism Theorem say in this situation?
18. Let \mathbb{R} be the additive group of real numbers, and let \mathbb{R}^{\times}be the multiplicative group of non-zero real numbers. Consider the map $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{\times}$given by $\varphi(x)=e^{x}$.
(i) Show that φ is an homomorphism from \mathbb{R} to \mathbb{R}^{\times}.
(ii) What is the kernel of φ ?
(iii) What is the image of φ ? For each $y \in \operatorname{im}(\varphi)$ find an $x \in \mathbb{R}$ such that $\varphi(x)=y$.
(iv) Is φ injective?
(v) Is φ surjective?
(vi) Is φ an isomorphism?
19. Let $\varphi: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ be the map given by $\varphi(x)= \begin{cases}1 & \text { if } x=(1,0) \text { or }(0,1), \\ 0 & \text { otherwise. }\end{cases}$
(i) Show that φ is a homomorphism.
(ii) What is $\operatorname{ker}(\varphi)$? What is $\operatorname{im}(\varphi)$?
20. Suppose $\varphi: \mathbb{Z}_{50} \rightarrow \mathbb{Z}_{15}$ is a homomorphism with $\varphi(7)=6$.
(i) Determine $\varphi(x)$, for all $x \in \mathbb{Z}_{50}$.
(ii) What is $\operatorname{ker}(\varphi)$? What is $\operatorname{im}(\varphi)$?
(iii) What is $\varphi^{-1}(3)$?
21. Show that there is no homomorphism from $\mathbb{Z}_{8} \times \mathbb{Z}_{2}$ onto $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$.
22. Find $\operatorname{Aut}\left(S_{3}\right)$.
23. Find $\operatorname{Aut}\left(Q_{8}\right)$.
24. Let G be a group.
(i) Show that, if G is abelian, then any subgroup of G is normal.
(ii) Is the intersection of a collection of normal subgroups of G normal?
(iii) Let $K \leq H \leq G$ be subgroups of G, and suppose that K is normal in G. Is Knormalin H ?
(iv) Let $K \leq H \leq G$ be subgroups of G, and suppose that K is normal in H. Is K normal in G ?
25. Let $f: G \rightarrow H$ be a function between two groups, and let

$$
K:=\{(x, y) \in G \times H \mid f(x)=y\}
$$

be its graph. Show that f is a homomorphism if and only if K is a subgroup of the direct product $G \times H$.
26. Let G be a group with center $Z(G)$, and let H be a subgroup of G.
(i) Show that if $H \subset Z(G)$, then H is normal in G.
(ii) Show that if $H \subset Z(G)$ and G / H is cyclic, then G is abelian.
27. Let $G=\mathrm{GL}_{3}\left(\mathbb{Z}_{2}\right)$ be the group of invertible 3×3 matrices with entries in \mathbb{Z}_{2}. Find a subgroup $H \leq G$ of order 8 .
28. Let A_{4} be the group of even permutations of the set $\{1,2,3,4\}$. Consider the subgroups $H=\langle(123)\rangle$ and $K=\langle(12)(34)\rangle$.
(i) Write down all the left and right cosets of H in A_{4}. Be sure to indicate the elements of each coset.
(ii) What is the order of H ? What is the index of H in A_{4} ? Is H a normal subgroup of A_{4} ?
(iii) Write down all the left and right cosets of K in A_{4}. Be sure to indicate the elements of each coset.
(iv) What is the order of K ? What is the index of K in A_{4} ? Is K a normal subgroup of A_{4} ?
(v) Find the intersection $H \cap K$. Is this a subgroup of A_{4} ? Is this a normal subgroup of A_{4} ?
(vi) Find the direct product $H \times K$ and identify it (up to isomorphism) as another well-known group of the same order.

