Practice Problems for Review 1

- Prove, by comparing orders of elements, that the following pairs of groups are not isomorphic:
 (i) Z₈ × Z₈ and Z₁₆ × Z₄.
 - (ii) $\mathbb{Z}_9 \times \mathbb{Z}_9 \times \mathbb{Z}_3$ and $\mathbb{Z}_{27} \times \mathbb{Z}_9$.
- **2.** Describe a specific isomorphism $\varphi \colon \mathbb{Z}_6 \times \mathbb{Z}_5 \to \mathbb{Z}_{30}$.
- **3.** Describe a specific isomorphism $\psi \colon \mathbb{Z}_{16}^{\times} \to \mathbb{Z}_2 \times \mathbb{Z}_4$.
- **4.** How many elements of order 6 are there in $\mathbb{Z}_6 \times \mathbb{Z}_9$?
- **5.** How many elements of order 25 are there in $\mathbb{Z}_5 \times \mathbb{Z}_{25}$?
- **6.** Let p be a prime. Determine the number of elements of order p in $\mathbb{Z}_{p^2} \times \mathbb{Z}_{p^2}$.
- 7. Let $G = S_3 \times \mathbb{Z}_5$. What are all possible orders of elements in G? Prove that G is not cyclic.

8. Let *H* be set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, with $a, b, d \in \mathbb{R}$ and $ad \neq 0$.

- (i) Show that H is a subgroup of $GL_2(\mathbb{R})$.
- (ii) Is H a normal subgroup of $GL_2(\mathbb{R})$?

9. Let *H* be set of all 2×2 matrices of the form $\begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$, with $a, c, d \in \mathbb{Z}$ and $ad = \pm 1$.

- (i) Show that H is a subgroup of $\operatorname{GL}_2(\mathbb{Z})$.
- (ii) Is H a normal subgroup of $GL_2(\mathbb{Z})$?
- **10.** Let $H = \{(1), (12)(34)\}.$
 - (i) Show that H is a subgroup of A_4 .
 - (ii) What is the index of H in A_4 ?
 - (iii) Is H a normal subgroup of A_4 ?
- **11.** Let $G = \mathbb{Z}_{32}^{\times}$, and $H = \{1, 31\}$. Show that the quotient group G/H is isomorphic to \mathbb{Z}_8 .
- **12.** Let $G = \mathbb{Z}_4 \oplus \mathbb{Z}_4^{\times}$, and consider the subgroups $H = \langle (2,3) \rangle$ and $K = \langle (2,1) \rangle$.
 - (i) List the elements of G/H, and compute the Cayley table for this group. What is the isomorphism type of G/H?

- (ii) List the elements of G/K, and compute the Cayley table for this group. What is the isomorphism type of G/K?
- (iii) Are the groups G/H and G/K isomorphic?
- **13.** Let $G = \mathbb{Z}_4 \times \mathbb{Z}_4$, and consider the subgroups $H = \{(0,0), (2,0), (0,2), (2,2)\}$ and $K = \langle (1,2) \rangle$. Identify the following groups (as direct products of cyclic groups of prime order):
 - (i) H and G/H.
 - (ii) K and G/K.
- 14. Give an example of a group G and a normal subgroup $H \triangleleft G$ such that both H and G/H are abelian, yet G is not abelian.
- 15. Let Z be the additive group of integers, and let f: Z → Z be the function given by f(x) = 8x.
 (i) Show that f is a homomorphism.
 - (ii) Find $\ker(f)$.
 - (iii) Find im(f).
- **16.** Let $\varphi \colon G \to H$ and $\psi \colon H \to K$ be two homomorphisms.
 - (i) Show that $\psi \circ \varphi \colon G \to K$ is a homomorphism.
 - (ii) Show that $\ker(\varphi)$ is a normal subgroup of $\ker(\psi \circ \varphi)$.
- **17.** Let G and H be two groups, and consider the map $p: G \times H \to H$ given by p(g,h) = h.
 - (i) Show that p is a homomorphism.
 - (ii) What is $\ker(p)$? What is $\operatorname{im}(p)$?
 - (iii) What does the First Isomorphism Theorem say in this situation?
- 18. Let \mathbb{R} be the additive group of real numbers, and let \mathbb{R}^{\times} be the multiplicative group of non-zero real numbers. Consider the map $\varphi \colon \mathbb{R} \to \mathbb{R}^{\times}$ given by $\varphi(x) = e^x$.
 - (i) Show that φ is an homomorphism from \mathbb{R} to \mathbb{R}^{\times} .
 - (ii) What is the kernel of φ ?
 - (iii) What is the image of φ ? For each $y \in im(\varphi)$ find an $x \in \mathbb{R}$ such that $\varphi(x) = y$.
 - (iv) Is φ injective?
 - (v) Is φ surjective?
 - (vi) Is φ an isomorphism?

19. Let $\varphi \colon \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}_2$ be the map given by $\varphi(x) = \begin{cases} 1 & \text{if } x = (1,0) \text{ or } (0,1), \\ 0 & \text{otherwise.} \end{cases}$

- (i) Show that φ is a homomorphism.
- (ii) What is $\ker(\varphi)$? What is $\operatorname{im}(\varphi)$?

- **20.** Suppose $\varphi \colon \mathbb{Z}_{50} \to \mathbb{Z}_{15}$ is a homomorphism with $\varphi(7) = 6$.
 - (i) Determine $\varphi(x)$, for all $x \in \mathbb{Z}_{50}$.
 - (ii) What is $\ker(\varphi)$? What is $\operatorname{im}(\varphi)$?
 - (iii) What is $\varphi^{-1}(3)$?
- **21.** Show that there is no homomorphism from $\mathbb{Z}_8 \times \mathbb{Z}_2$ onto $\mathbb{Z}_4 \times \mathbb{Z}_4$.
- **22.** Find $\operatorname{Aut}(S_3)$.
- **23.** Find $\operatorname{Aut}(Q_8)$.
- **24.** Let G be a group.
 - (i) Show that, if G is abelian, then any subgroup of G is normal.
 - (ii) Is the intersection of a collection of normal subgroups of G normal?
 - (iii) Let $K \leq H \leq G$ be subgroups of G, and suppose that K is normal in G. Is KnormalinH?
 - (iv) Let $K \leq H \leq G$ be subgroups of G, and suppose that K is normal in H. Is K normal in G?
- **25.** Let $f: G \to H$ be a function between two groups, and let

$$K := \{(x, y) \in G \times H \mid f(x) = y\}$$

be its graph. Show that f is a homomorphism if and only if K is a subgroup of the direct product $G \times H$.

- **26.** Let G be a group with center Z(G), and let H be a subgroup of G.
 - (i) Show that if $H \subset Z(G)$, then H is normal in G.
 - (ii) Show that if $H \subset Z(G)$ and G/H is cyclic, then G is abelian.
- **27.** Let $G = GL_3(\mathbb{Z}_2)$ be the group of invertible 3×3 matrices with entries in \mathbb{Z}_2 . Find a subgroup $H \leq G$ of order 8.
- **28.** Let A_4 be the group of even permutations of the set $\{1, 2, 3, 4\}$. Consider the subgroups $H = \langle (123) \rangle$ and $K = \langle (12)(34) \rangle$.
 - (i) Write down all the **left** and **right** cosets of H in A_4 . Be sure to indicate the elements of each coset.
 - (ii) What is the order of H? What is the index of H in A_4 ? Is H a normal subgroup of A_4 ?
 - (iii) Write down all the **left** and **right** cosets of K in A_4 . Be sure to indicate the elements of each coset.
 - (iv) What is the order of K? What is the index of K in A_4 ? Is K a normal subgroup of A_4 ?
 - (v) Find the intersection $H \cap K$. Is this a subgroup of A_4 ? Is this a normal subgroup of A_4 ?
 - (vi) Find the direct product $H \times K$ and identify it (up to isomorphism) as another well-known group of the same order.