Solutions to Quiz 5

1. List all the elements of $\mathbb{Z}_2 \oplus \mathbb{Z}_8$, and compute their orders.

Element (a, b)	(0,0)	(1,0)	(0,1)	(1,1)	(0,2)	(1,2)	(0,3)	(1,3)
order $ (a,b) $	1	2	8	8	4	4	8	8
Element (a, b)	(0,4)	(1,4)	(0,5)	(1,5)	(0,6)	(1,6)	(0,7)	(1,7)
order $ (a,b) $	2	2	8	8	4	4	8	8

2. Show that the group U(9) is isomorphic to the direct product $\mathbb{Z}_2 \oplus \mathbb{Z}_3$, by describing *explicitly* an isomorphism $\phi: U(9) \to \mathbb{Z}_2 \oplus \mathbb{Z}_3$.

$$U(9) \rightarrow \mathbb{Z}_2 \oplus \mathbb{Z}_3$$

$$1 \mapsto (0,0)$$

$$2 \mapsto (1,1)$$

$$4 \mapsto (0,2)$$

$$5 \mapsto (1,2)$$

$$7 \mapsto (0,1)$$

$$8 \mapsto (1,0)$$

- **3.** Consider the group $G = S_3 \oplus \mathbb{Z}_6$.
 - (a) Determine the set of orders of elements in G, that is, the set $\{|g| \mid g \in G\}$.

Orders of elements in S_3 : 1, 2, 3; Orders of elements in \mathbb{Z}_6 : 1, 2, 3, 6; Orders of elements in $S_3 \oplus \mathbb{Z}_6$: 1, 2, 3, 6.

(b) Prove that G is *not* cyclic.

The order of G is 36, but there are no elements of order 36 in G. Hence G is not cyclic.

4. How many elements of order 7 are there in $\mathbb{Z}_{70} \oplus \mathbb{Z}_{490}$?

#{elements of order 7 in \mathbb{Z}_{70} } = $\phi(7) = 6$ #{elements of order 7 in \mathbb{Z}_{490} } = $\phi(7) = 6$ #{of elements of order 7 in $\mathbb{Z}_{70} \oplus \mathbb{Z}_{490}$ } = $\phi(7) \times 1 + \phi(7) \times \phi(7) + 1 \times \phi(7)$ = $6 + 6 \times 6 + 6 = 48$

5. List all abelian groups (up to isomorphism) of order 72. Write each such group as a direct product of cyclic groups of prime power order.

 $\mathbb{Z}_{2^3} \oplus \mathbb{Z}_{3^2}$ $\mathbb{Z}_2 \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{3^2}$ $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{3^2}$ $\mathbb{Z}_{2^3} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$ $\mathbb{Z}_2 \oplus \mathbb{Z}_{2^2} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$ $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$

WARNING: Since the problem asks you to write down the groups as direct products of cyclic groups of prime power order, you cannot write for example \mathbb{Z}_{72} instead of $\mathbb{Z}_{2^3} \times \mathbb{Z}_{3^2}$, even though the two groups are isomorphic (because 2^3 is prime to 3^2).

6. Let G be an abelian group of order 108. Suppose that G has exactly eight elements of order 3, and one element of order 2. Determine the isomorphism class of G.

The order of G has prime factorization $108 = 2^2 \times 3^3$. The abelian groups of order 108 (up to isomorphism) are:

 $\begin{array}{l} \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{3^3} \\ \mathbb{Z}_{2^2} \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_3 \text{ (This group satisfies the conditions.)} \\ \mathbb{Z}_{2^2} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \text{ (This group has 26 elements of order 3 and 1 element of order 2.)} \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{3^3} \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_3 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_{3^2} \oplus \mathbb{Z}_3 \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \end{array}$