Prof. Alexandru Suciu

MATH 3175
Group Theory
Fall 2010

Solutions to Quiz 5

1. List all the elements of $\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$, and compute their orders.

Element $(a, b) \mid$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$	$(0,2)$	$(1,2)$	$(0,3)$	$(1,3)$	
order $\|(a, b)\|$	1	2	8	8	4	4	8	8	
Element $(a, b) \mid$	$(0,4)$	$(1,4)$	$(0,5)$	$(1,5)$	$(0,6)$	$(1,6)$	$(0,7)$	$(1,7)$	
order $\|(a, b)\|$	2	2	8	8	4	4	8	8	

2. Show that the group $U(9)$ is isomorphic to the direct product $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, by describing explicitly an isomorphism $\phi: U(9) \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$.

$$
\begin{aligned}
U(9) & \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \\
1 & \mapsto(0,0) \\
2 & \mapsto(1,1) \\
4 & \mapsto(0,2) \\
5 & \mapsto(1,2) \\
7 & \mapsto(0,1) \\
8 & \mapsto(1,0)
\end{aligned}
$$

3. Consider the group $G=S_{3} \oplus \mathbb{Z}_{6}$.
(a) Determine the set of orders of elements in G, that is, the set $\{|g| \mid g \in G\}$.

Orders of elements in $S_{3}: 1,2,3$;
Orders of elements in $\mathbb{Z}_{6}: 1,2,3,6$;
Orders of elements in $S_{3} \oplus \mathbb{Z}_{6}: 1,2,3,6$.
(b) Prove that G is not cyclic.

The order of G is 36 , but there are no elements of order 36 in G. Hence G is not cyclic.
4. How many elements of order 7 are there in $\mathbb{Z}_{70} \oplus \mathbb{Z}_{490}$?

$$
\begin{aligned}
\#\left\{\text { elements of order } 7 \text { in } \mathbb{Z}_{70}\right\} & =\phi(7)=6 \\
\#\left\{\text { elements of order } 7 \text { in } \mathbb{Z}_{490}\right\} & =\phi(7)=6 \\
\#\left\{\text { of elements of order } 7 \text { in } \mathbb{Z}_{70} \oplus \mathbb{Z}_{490}\right\} & =\phi(7) \times 1+\phi(7) \times \phi(7)+1 \times \phi(7) \\
& =6+6 \times 6+6=48
\end{aligned}
$$

5. List all abelian groups (up to isomorphism) of order 72 . Write each such group as a direct product of cyclic groups of prime power order.
$\mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{3^{2}}$
$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3^{2}}$
$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3^{2}}$
$\mathbb{Z}_{2^{3}} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$
$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$
$\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$
WARNING: Since the problem asks you to write down the groups as direct products of cyclic groups of prime power order, you cannot write for example \mathbb{Z}_{72} instead of $\mathbb{Z}_{2^{3}} \times \mathbb{Z}_{3^{2}}$, even though the two groups are isomorphic (because 2^{3} is prime to 3^{2}).
6. Let G be an abelian group of order 108. Suppose that G has exactly eight elements of order 3 , and one element of order 2 . Determine the isomorphism class of G.

The order of G has prime factorization $108=2^{2} \times 3^{3}$.
The abelian groups of order 108 (up to isomorphism) are:

```
\(\mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3^{3}}\)
\(\mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{3}\) (This group satisfies the conditions.)
\(\mathbb{Z}_{2^{2}} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}\) (This group has 26 elements of order 3 and 1 element of order 2.)
\(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3^{3}}\)
\(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3^{2}} \oplus \mathbb{Z}_{3}\)
\(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}\)
```

