Prof. Alexandru Suciu

Solutions to Quiz 1

1. Consider the integers $a=18$ and $b=27$.
(i) Find $d=\operatorname{gcd}(18,27)$ and $\ell=\operatorname{lcm}(18,27)$.

$$
d=9, \quad \ell=54
$$

(ii) What is the relationship between a, b, d, and ℓ predicted by the general theory? Verify this relationship holds in this situation.

$$
d \cdot \ell=a \cdot b: \quad 9 \cdot 54=18 \cdot 27=486 .
$$

(iii) Find a pair of integers s and t such that $18 s+27 t=d$.

$$
18 \cdot(-1)+27 \cdot 1=9 \Longrightarrow s=-1, t=1
$$

(iv) Find the general solution for all the pairs of integers s and t such that $18 s+27 t=d$.

$$
s=-1-3 k, t=1+2 k
$$

2. The following Latin square is the Cayley table of a group:

	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

(i) Verify associativity for the non-identity elements in the group.

$$
\begin{array}{ll}
(a b) c=c c=e & a(b c)=a a=e \\
(a a) b=e b=b & a(a b)=a c=b \\
(a a) a=e a=a & a(a a)=a e=a
\end{array}
$$

(ii) Is the group abelian? Why, or why not?

The Cayley table is symmetric. Thus, the group is abelian.
(iii) What are the inverses of a, b, and c, respectively?

$$
a^{-1}=a, \quad b^{-1}=b, \quad c^{-1}=c .
$$

(iv) Is the inverse of $a b$ equal to $b a$? Why, or why not?

$$
(a b)^{-1}=b^{-1} a^{-1}=b a
$$

3. Show that the following identities hold in any group. Explain your reasoning.
(i) $\left(a^{-1}\right)^{-1}=a$. The fact that a^{-1} is the inverse of a is expressed as:

$$
a^{-1} \cdot a=a \cdot a^{-1}=e .
$$

But this also means a is the inverse of a^{-1}, i.e., $a=\left(a^{-1}\right)^{-1}$.
(ii) $\left(a^{-1} b a\right)^{3}=a^{-1} b^{3} a$.

$$
\left(a^{-1} b a\right)^{3}=a^{-1} b a \cdot a^{-1} b a \cdot a^{-1} b a=a^{-1} b e b e b a \cdot a^{-1}=a^{-1} b^{3} a .
$$

4. Consider the group $U(12)$.
(i) List all the elements in $U(12)$, and write down the Cayley table for the group.

$U(12)=\{1,5,7,11\}$											
1											
5					$	$		1	5	7	11
:---:	:---:	:---:	:---:	:---:							
7	5	1	11	5							
71	7	11	1	5							
11	11	5	5	1							

(ii) For each element a in $U(12)$, indicate what is a^{-1}.

$$
1^{-1}=1, \quad 5^{-1}=5, \quad 7^{-1}=7, \quad 11^{-1}=11 .
$$

5. Consider the following two matrices, viewed as elements in the group $\mathrm{GL}_{2}\left(\mathbb{Z}_{7}\right)$:

$$
A=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(i) Find the inverse of the A in $\mathrm{GL}_{2}\left(\mathbb{Z}_{7}\right)$.

$$
\begin{aligned}
\operatorname{det} A & =4 \cdot 2-1 \cdot 3=5 \quad(\operatorname{det} A)^{-1}=5^{-1}=3 . \\
A^{-1} & =3 \cdot\left(\begin{array}{cc}
2 & -1 \\
-3 & 4
\end{array}\right)=\left(\begin{array}{cc}
6 & -3 \\
-9 & 12
\end{array}\right)=\left(\begin{array}{ll}
6 & 4 \\
5 & 5
\end{array}\right)
\end{aligned}
$$

(ii) Compute the products $A \cdot B$ and $B \cdot A$. Are they the same, or not?

$$
\begin{aligned}
A \cdot B & =\left(\begin{array}{ll}
4 & 5 \\
3 & 5
\end{array}\right) \\
B \cdot A & =\left(\begin{array}{ll}
0 & 3 \\
3 & 2
\end{array}\right)
\end{aligned}
$$

Thus, the two products are different.
(iii) Is the group $\mathrm{GL}_{2}\left(\mathbb{Z}_{7}\right)$ commutative? Why, or why not?

No, the group is not commutative, since it has a pair of elements (the matrices A an B above) which do not commute.
6. Let G a group such that $(a b)^{-1}=a^{-1} b^{-1}$, for all a and b in G. Prove that G is abelian.

Let a and b be two elements in G. We then always have

$$
(a b)^{-1}=b^{-1} a^{-1}
$$

In our situation, we also have

$$
(a b)^{-1}=a^{-1} b^{-1}
$$

Thus,

$$
b^{-1} a^{-1}=a^{-1} b^{-1} .
$$

Now take inverses on both sides:

$$
\left(b^{-1} a^{-1}\right)^{-1}=\left(a^{-1} b^{-1}\right)^{-1} .
$$

Using the first formula, together with the identity from Problem 3(i), we get:

$$
a b=b a
$$

We have shown that any pair of elements in G commutes. Thus, G is abelian.

