Prof. Alexandru Suciu
Group Theory
Fall 2010 Quiz 3

1. (a) Draw the subgroup lattice of \mathbb{Z}_{30}.
(b) Make a table with all the elements of \mathbb{Z}_{30}, grouped according to their orders; how many elements of each possible order are there?
2. Let a be an element of a group G, and suppose a has order 24 .
(a) List all the elements in the subgroup $\left\langle a^{4}\right\rangle$, together with their respective orders.
(b) What are the generators of the subgroup $\left\langle a^{4}\right\rangle$?
3. Let $\alpha=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 6 & 1 & 4 & 2\end{array}\right]$ and $\beta=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5\end{array}\right]$, viewed as elements in S_{6}.
(a) Compute the product of α and β :

$$
\alpha \beta=
$$

(b) Compute the inverse of α :
$\alpha^{-1}=$
(c) Compute the conjugate of β by α :
$\alpha \beta \alpha^{-1}=$
(d) Do α and β commute?
4. Let $\alpha=\left[\begin{array}{llllllllcc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 9 & 4 & 7 & 1 & 2 & 8 & 5 & 10 & 6\end{array}\right]$, viewed as an element in S_{10}.
(a) Write α as products of disjoint cycles.
(b) Find the order of α.
(c) Write α as a product of transpositions.
(d) Find the parity of α.
5. (a) How many permutations of order 5 are there in S_{5} ?
(b) How many permutations of order 5 are there in S_{6} ?
6. Find permutations α and β such that:
(a) $|\alpha|=2,|\beta|=2$, and $|\alpha \beta|=2$.
(b) $|\alpha|=2,|\beta|=2$, and $|\alpha \beta|=3$.
(c) $|\alpha|=2,|\beta|=4$, and $|\alpha \beta|=4$.

