Quiz 1

1. Consider the integers $a=18$ and $b=27$.
(i) Find $d=\operatorname{gcd}(18,27)$ and $\ell=\operatorname{lcm}(18,27)$.
(ii) What is the relationship between a, b, d, and ℓ predicted by the general theory? Verify this relationship holds in this situation.
(iii) Find a pair of integers s and t such that $18 s+27 t=d$.
(iv) Find the general solution for all the pairs of integers s and t such that $18 s+27 t=d$.
2. The following Latin square is the Cayley table of a group:

	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

(i) Verify associativity for the non-identity elements in the group.
(ii) Is the group abelian? Why, or why not?
(iii) What are the inverses of a, b, and c, respectively?
(iv) Is the inverse of $a b$ equal to $b a$? Why, or why not?
3. Show that the following identities hold in any group. Explain your reasoning.
(i) $\left(a^{-1}\right)^{-1}=a$.
(ii) $\left(a^{-1} b a\right)^{3}=a^{-1} b^{3} a$.
4. Consider the group $U(12)$.
(i) List all the elements in $U(12)$, and write down the Cayley table for the group.
(ii) For each element a in $U(12)$, indicate what is a^{-1}.
5. Consider the following two matrices, viewed as elements in the group $\mathrm{GL}_{2}\left(\mathbb{Z}_{7}\right)$:

$$
A=\left(\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(i) Find the inverse of the A in $\mathrm{GL}_{2}\left(\mathbb{Z}_{7}\right)$.
(ii) Compute the products $A \cdot B$ and $B \cdot A$. Are they the same, or not?
(iii) Is the group $\mathrm{GL}_{2}\left(\mathbb{Z}_{7}\right)$ commutative? Why, or why not?
6. Let G a group such that $(a b)^{-1}=a^{-1} b^{-1}$, for all a and b in G. Prove that G is abelian.

