MATH 3175

Prof. Alexandru Suciu

Group Theory

Fall 2010

Quiz 1

- 1. Consider the integers a = 18 and b = 27.
 - (i) Find $d = \gcd(18, 27)$ and $\ell = \operatorname{lcm}(18, 27)$.
 - (ii) What is the relationship between a, b, d, and ℓ predicted by the general theory? Verify this relationship holds in this situation.
 - (iii) Find a pair of integers s and t such that 18s + 27t = d.
 - (iv) Find the general solution for all the pairs of integers s and t such that 18s + 27t = d.

	e	a	b	c
e	e	a	b	с
a	a	e	c	b
b	b	c	e	a
c	с	b	a	e

2. The following Latin square is the Cayley table of a group:

- (i) Verify associativity for the non-identity elements in the group.
- (ii) Is the group abelian? Why, or why not?
- (iii) What are the inverses of a, b, and c, respectively?
- (iv) Is the inverse of *ab* equal to *ba*? Why, or why not?

- 3. Show that the following identities hold in any group. Explain your reasoning.
 - (i) $(a^{-1})^{-1} = a$.
 - (ii) $(a^{-1}ba)^3 = a^{-1}b^3a$.

4. Consider the group U(12).

- (i) List all the elements in U(12), and write down the Cayley table for the group.
- (ii) For each element a in U(12), indicate what is a^{-1} .

5. Consider the following two matrices, viewed as elements in the group $GL_2(\mathbb{Z}_7)$:

$$A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

- (i) Find the inverse of the A in $GL_2(\mathbb{Z}_7)$.
- (ii) Compute the products $A \cdot B$ and $B \cdot A$. Are they the same, or not?
- (iii) Is the group $GL_2(\mathbb{Z}_7)$ commutative? Why, or why not?

6. Let G a group such that $(ab)^{-1} = a^{-1}b^{-1}$, for all a and b in G. Prove that G is abelian.