Practice Quiz 6

- **1.** Let *H* be set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$, with $a, b, d \in \mathbb{R}$ and $ad \neq 0$.
 - (a) Show that H is a subgroup of $GL_2(\mathbb{R})$.
 - (b) Is H a normal subgroup of $GL_2(\mathbb{R})$?
- **2.** Let $H = \{(1), (12)(34)\}.$
 - (a) Show that H is a subgroup of A_4 .
 - (b) What is the index of H in A_4 ?
 - (c) Is H a normal subgroup of A_4 ?
- **3.** Let G = U(32), and $H = \{1, 31\}$. Show that the quotient group G/H is isomorphic to \mathbb{Z}_8 .
- **4.** Let $G = \mathbb{Z}_4 \oplus U(4)$, and consider the subgroups $H = \langle (2,3) \rangle$ and $K = \langle (2,1) \rangle$.
 - (a) List the elements of G/H, and compute the Cayley table for this group. What is the isomorphism type of G/H?
 - (b) List the elements of G/K, and compute the Cayley table for this group. What is the isomorphism type of G/K?
 - (c) Are the groups G/H and G/K isomorphic?
- 5. Let $G = \mathbb{Z}_4 \oplus \mathbb{Z}_4$, and consider the subgroups $H = \{(0,0), (2,0), (0,2), (2,2)\}$ and $K = \langle (1,2) \rangle$. Identify the following groups (as direct products of cyclic groups of prime order):
 - (a) H and G/H.
 - (b) K and G/K.
- **6.** Give an example of a group G and a normal subgroup $H \triangleleft G$ such that both H and G/H are abelian, yet G is not abelian.

- 7. Let \mathbb{Z} be the additive group of integers, and let $f: \mathbb{Z} \to \mathbb{Z}$ be the function given by f(x) = 8x.
 - (a) Show that f is a homomorphism.
 - (b) Find $\ker(f)$.
 - (c) Find $\operatorname{im}(f)$.
- **8.** Let $\phi: G \to H$ and $\psi: H \to K$ be two homomorphisms.
 - (a) Show that $\psi \circ \phi \colon G \to K$ is a homomorphism.
 - (b) Show that $\ker(\phi)$ is a normal subgroup of $\ker(\psi \circ \phi)$.
- **9.** Let G and H be two groups, and consider the map $p: G \oplus H \to H$ given by p(g,h) = h.
 - (a) Show that p is a homomorphism.
 - (b) What is ker(p)? What is im(p)?
 - (c) What does the First Isomorphism Theorem say in this situation?
- **10.** Let $\phi: D_n \to \mathbb{Z}_2$ be the map given by

$$\phi(x) = \begin{cases} 0 & \text{if } x \text{ is a rotation,} \\ 1 & \text{if } x \text{ is a reflection.} \end{cases}$$

- (a) Show that ϕ is a homomorphism.
- (b) What is $\ker(p)$? What is $\operatorname{im}(p)$?
- **11.** Suppose $\phi \colon \mathbb{Z}_{50} \to \mathbb{Z}_{15}$ is a homomorphism with $\phi(7) = 6$.
 - (a) Determine $\phi(x)$, for all $x \in \mathbb{Z}_{50}$.
 - (b) What is $\ker(\phi)$? What is $\operatorname{im}(\phi)$?
 - (c) What is $\phi^{-1}(3)$?

12. Show that there is no homomorphism from $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ onto $\mathbb{Z}_4 \oplus \mathbb{Z}_4$.