1. Let H be set of all 2×2 matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, with $a, b, d \in \mathbb{R}$ and $a d \neq 0$.
(a) Show that H is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.
(b) Is H a normal subgroup of $\mathrm{GL}_{2}(\mathbb{R})$?
2. Let $H=\{(1),(12)(34)\}$.
(a) Show that H is a subgroup of A_{4}.
(b) What is the index of H in A_{4} ?
(c) Is H a normal subgroup of A_{4} ?
3. Let $G=U(32)$, and $H=\{1,31\}$. Show that the quotient group G / H is isomorphic to \mathbb{Z}_{8}.
4. Let $G=\mathbb{Z}_{4} \oplus U(4)$, and consider the subgroups $H=\langle(2,3)\rangle$ and $K=\langle(2,1)\rangle$.
(a) List the elements of G / H, and compute the Cayley table for this group. What is the isomorphism type of G / H ?
(b) List the elements of G / K, and compute the Cayley table for this group. What is the isomorphism type of G / K ?
(c) Are the groups G / H and G / K isomorphic?
5. Let $G=\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$, and consider the subgroups $H=\{(0,0),(2,0),(0,2),(2,2)\}$ and $K=\langle(1,2)\rangle$. Identify the following groups (as direct products of cyclic groups of prime order):
(a) H and G / H.
(b) K and G / K.
6. Give an example of a group G and a normal subgroup $H \triangleleft G$ such that both H and G / H are abelian, yet G is not abelian.
7. Let \mathbb{Z} be the additive group of integers, and let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function given by $f(x)=8 x$.
(a) Show that f is a homomorphism.
(b) Find $\operatorname{ker}(f)$.
(c) Find $\operatorname{im}(f)$.
8. Let $\phi: G \rightarrow H$ and $\psi: H \rightarrow K$ be two homomorphisms.
(a) Show that $\psi \circ \phi: G \rightarrow K$ is a homomorphism.
(b) Show that $\operatorname{ker}(\phi)$ is a normal subgroup of $\operatorname{ker}(\psi \circ \phi)$.
9. Let G and H be two groups, and consider the map $p: G \oplus H \rightarrow H$ given by $p(g, h)=h$.
(a) Show that p is a homomorphism.
(b) What is $\operatorname{ker}(p)$? What is $\operatorname{im}(p)$?
(c) What does the First Isomorphism Theorem say in this situation?
10. Let $\phi: D_{n} \rightarrow \mathbb{Z}_{2}$ be the map given by

$$
\phi(x)= \begin{cases}0 & \text { if } x \text { is a rotation } \\ 1 & \text { if } x \text { is a reflection }\end{cases}
$$

(a) Show that ϕ is a homomorphism.
(b) What is $\operatorname{ker}(p)$? What is $\operatorname{im}(p)$?
11. Suppose $\phi: \mathbb{Z}_{50} \rightarrow \mathbb{Z}_{15}$ is a homomorphism with $\phi(7)=6$.
(a) Determine $\phi(x)$, for all $x \in \mathbb{Z}_{50}$.
(b) What is $\operatorname{ker}(\phi)$? What is $\operatorname{im}(\phi)$?
(c) What is $\phi^{-1}(3)$?
12. Show that there is no homomorphism from $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$ onto $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$.

