Prof. Alexandru Suciu
MATH 3175
Group Theory
Fall 2010
Solutions to Practice Quiz 6

1. Let H be set of all 2×2 matrices of the form $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$, with $a, b, d \in \mathbb{R}$ and $a d \neq 0$.
(a) Show that H is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.

By definition, H is the set of nonsingular (invertible) upper triangular matrices, a subset of $\mathrm{GL}_{2}(\mathbb{R})$. The identity matrix I is in H. And H is closed under matrix multiplication: the product of nonsingular upper triangular matrices is nonsingular and upper triangular. Also, it is closed under taking inverses: the inverse of $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ is $\left[\begin{array}{cc}a^{-1} & -a^{-1} d^{-1} b \\ 0 & d^{-1}\end{array}\right]$. Hence, it is a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$.
(b) Is H a normal subgroup of $\mathrm{GL}_{2}(\mathbb{R})$?

No. For any $\left[\begin{array}{cc}a & b \\ 0 & d\end{array}\right] \in H$ and $\left[\begin{array}{cc}x & y \\ z & w\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{R})$, we have $\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]\left[\begin{array}{cc}a & b \\ 0 & d\end{array}\right]\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]^{-1}=\frac{1}{w x-y z}\left[\begin{array}{cc}a w x-b z x-d y z & b x^{2}-a y x+d y x \\ -b z^{2}+a w z-d w z & d w x+b z x-a y z\end{array}\right]$.

In general, this matrix is not in H. (To complete the answer, you should give a specific example.)
2. Let $H=\{(1),(12)(34)\}$.
(a) Show that H is a subgroup of A_{4}.
H is generated by the permutation (12)(34), which has order 2.
(b) What is the index of H in A_{4} ?

$$
\frac{\left|A_{4}\right|}{|H|}=\frac{12}{2}=6 .
$$

(c) Is H a normal subgroup of A_{4} ?

No. For $(321) \in A_{4}$ with inverse (123), we have

$$
(321) \cdot(12)(34) \cdot(123)=(13)(24)
$$

which is not in H.
3. Let $G=U(32)$, and $H=\{1,31\}$. Show that the quotient group G / H is isomorphic to \mathbb{Z}_{8}.

Define a surjective homomorphism $\phi: G \rightarrow \mathbb{Z}_{8}$ by sending $1 \mapsto 0,3 \mapsto 1,9 \mapsto 2$, $27 \mapsto 3,17 \mapsto 4,19 \mapsto 5,25 \mapsto 6,11 \mapsto 7,7 \mapsto 2,23 \mapsto 6$, etc., and also $31 \mapsto 0$. You should check now that ϕ has kernel H. Thus, by the First Isomorphism Theorem, $G / H \cong \mathbb{Z}_{8}$.
4. Let $G=\mathbb{Z}_{4} \oplus U(4)$, and consider the subgroups $H=\langle(2,3)\rangle$ and $K=\langle(2,1)\rangle$.
(a) List the elements of G / H, and compute the Cayley table for this group. What is the isomorphism type of G / H ?

$$
G / H \cong \mathbb{Z}_{4} .
$$

(b) List the elements of G / K, and compute the Cayley table for this group. What is the isomorphism type of G / K ?
$G / K \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
(c) Are the groups G / H and G / K isomorphic?

No.
5. Let $G=\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$, and consider the subgroups $H=\{(0,0),(2,0),(0,2),(2,2)\}$ and $K=\langle(1,2)\rangle$. Identify the following groups (as direct products of cyclic groups of prime order):
(a) H and G / H.

Clearly, $H \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Moreover, $G / H \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$; indeed, the assignment $(0,1) \mapsto(0,1)$ and $(1,0) \mapsto(1,0)$ defines a homomorphism from G onto $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, with kernel H.
(b) K and G / K.

By definition, K is cyclic; since its generator, $(1,2)$, has order 4, we have $K \cong \mathbb{Z}_{4}$. On the other hand, $G / K \cong \mathbb{Z}_{4}$, which can be seen by sending $(0,1)$ and $(1,0)$ to 1 and 2 , respectively. This defines a homomorphism from G onto \mathbb{Z}_{4}, with kernel K.
6. Give an example of a group G and a normal subgroup $H \triangleleft G$ such that both H and G / H are abelian, yet G is not abelian.

Take $G=D_{n}$, with $n \geq 3$, and H the subgroup of rotations. (See Problem 10.) Then $H \cong \mathbb{Z}_{n}$ and $G / H \cong \mathbb{Z}_{2}$, but $G=D_{n}$ is not abelian.
7. Let \mathbb{Z} be the additive group of integers, and let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function given by $f(x)=8 x$.
(a) Show that f is a homomorphism.

$$
f(x+y)=8(x+y)=8 x+8 y=f(x)+f(y) .
$$

(b) Find $\operatorname{ker}(f)$.

$$
\operatorname{ker}(f)=\{0\}
$$

(c) Find $\operatorname{im}(f)$.

$$
\operatorname{im}(f)=8 \mathbb{Z}=\{8 k \mid k \in \mathbb{Z}\}
$$

8. Let $\phi: G \rightarrow H$ and $\psi: H \rightarrow K$ be two homomorphisms.
(a) Show that $\psi \circ \phi: G \rightarrow K$ is a homomorphism.

We have:

$$
\psi \circ \phi\left(g_{1} g_{2}\right)=\psi\left(\phi\left(g_{1} g_{2}\right)\right)=\psi\left(\phi\left(g_{1}\right) \phi\left(g_{2}\right)\right)=\psi \circ \phi\left(g_{1}\right) \psi \circ \phi\left(g_{2}\right) .
$$

(b) Show that $\operatorname{ker}(\phi)$ is a normal subgroup of $\operatorname{ker}(\psi \circ \phi)$.

For any $h \in \operatorname{ker}(\phi)$ and $g \in \operatorname{ker}(\psi \circ \phi)$, the conjugate $g h g^{-1}$ is in $\operatorname{ker}(\phi)$:

$$
\phi\left(g h g^{-1}\right)=\phi(g) \phi(h) \phi\left(g^{-1}\right)=\phi(g) \phi\left(g^{-1}\right)=e .
$$

9. Let G and H be two groups, and consider the map $p: G \oplus H \rightarrow H$ given by $p(g, h)=h$.
(a) Show that p is a homomorphism.

We have:

$$
p\left(\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)\right)=p\left(g_{1} g_{2}, h_{1} h_{2}\right)=h_{1} h_{2}=p\left(g_{1}, h_{1}\right) p\left(g_{2}, h_{2}\right) .
$$

(b) What is $\operatorname{ker}(p)$? What is $\operatorname{im}(p)$?
$\operatorname{ker}(p)=G, \operatorname{im}(p)=H$.
(c) What does the First Isomorphism Theorem say in this situation?

View G as a subgroup, actually a normal subgroup, of $G \oplus H$. Then the quotient group, $(G \oplus H) / G$, is isomorphic to H.
10. Let $\phi: D_{n} \rightarrow \mathbb{Z}_{2}$ be the map given by

$$
\phi(x)= \begin{cases}0 & \text { if } x \text { is a rotation } \\ 1 & \text { if } x \text { is a reflection }\end{cases}
$$

(a) Show that ϕ is a homomorphism.

The product of two reflections is a rotation around the intersection point of the two reflection axes; the product of a reflection and a rotation is a reflection; and the product of two rotations is again a rotation.
(b) What is $\operatorname{ker}(p)$? What is $\operatorname{im}(p)$?
$\operatorname{ker}(p) \cong \mathbb{Z}_{n}$ is the cyclic subgroup generated by a rotation through $\frac{360}{n}$ degrees. $\operatorname{im}(p)=\mathbb{Z}_{2}$.
11. Suppose $\phi: \mathbb{Z}_{50} \rightarrow \mathbb{Z}_{15}$ is a homomorphism with $\phi(7)=6$.
(a) Determine $\phi(x)$, for all $x \in \mathbb{Z}_{50}$.
$\phi(x)=3 x \bmod 15$
(b) What is $\operatorname{ker}(\phi)$? What is $\operatorname{im}(\phi)$?

$$
\operatorname{ker}(\phi)=\{0,5,10,15, \ldots, 45\}, \text { while } \operatorname{im}(\phi)=\{0,3,6,9,12\}
$$

(c) What is $\phi^{-1}(3)$?

$$
\phi^{-1}(3)=1+\operatorname{ker}(\phi)=\{1,6,11,16, \ldots, 46\}
$$

12. Show that there is no homomorphism from $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$ onto $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$.

Suppose there is a surjective homomorphism $\phi: \mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$. By the First Isomorphism Theorem,

$$
\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} / \operatorname{ker}(\phi) \cong \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}
$$

Thus,

$$
|\operatorname{ker}(\phi)|=\frac{\left|\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}\right|}{\left|\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}\right|}=\frac{16}{16}=1 .
$$

Hence, the kernel is trivial, i.e., $\operatorname{ker} \phi=\{(0,0)\}$. So ϕ is actually an isomorphism. But $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$ has an element of order 8, while $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$ does not. Contradiction.

