1. (a) Find the subgroup lattice of \mathbb{Z}_{36}.
(b) Make a table with all the elements of \mathbb{Z}_{36}, grouped according to their orders.
(c) What are all the possible orders, and how many elements of each possible order are there?
2. (a) List of the elements of \mathbb{Z}_{40} that have order 10 .
(b) Suppose $|x|=10$. List of the elements of $\langle x\rangle$ that have order 10.
3. Let G be a group, and H a subgroup of G. For any fixed $x \in G$, define the conjugate of H by x to be

$$
x H x^{-1}=\left\{x h x^{-1} \mid h \in H\right\} .
$$

Show that $x H x^{-1}$ is a subgroup of G.
4. Let G be a group, and H a subgroup of G. Define the normalizer of H to be

$$
N(H)=\left\{x \in G \mid x H x^{-1}=H\right\} .
$$

Show that $N(H)$ is a subgroup of G.
5. Let $\alpha=\left[\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6\end{array}\right]$ and $\beta=\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5\end{array}\right]$.
(a) Find $\alpha \beta$ and $\beta \alpha$.
(b) Compute the inverses of $\alpha, \beta, \alpha \beta$, and $\beta \alpha$.
(c) Write $\alpha, \beta, \alpha \beta$, and $\beta \alpha$ as products of disjoint cycles.
(d) Write $\alpha, \beta, \alpha \beta$, and $\beta \alpha$ as products of transpositions.
(e) Find the orders of $\alpha, \beta, \alpha \beta$, and $\beta \alpha$.
(f) Find the parity of $\alpha, \beta, \alpha \beta$, and $\beta \alpha$.
6. Let $\alpha=\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6\end{array}\right]$ and $\beta=\left[\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4\end{array}\right]$.
(a) Find $\alpha \beta$ and $\beta \alpha$.
(b) Compute the inverses of $\alpha, \beta, \alpha \beta$, and $\beta \alpha$.
(c) Write $\alpha, \beta, \alpha \beta$, and $\beta \alpha$ as products of disjoint cycles.
(d) Write $\alpha, \beta, \alpha \beta$, and $\beta \alpha$ as products of transpositions.
(e) Find the orders of $\alpha, \beta, \alpha \beta$, and $\beta \alpha$.
(f) Find the parity of $\alpha, \beta, \alpha \beta$, and $\beta \alpha$.
7. (a) Find the conjugate of $(1234)(56)$ by $a=(25)$ in S_{7}.
(b) Find the conjugate of $(1234)(56)$ by $a=(27)$ in S_{7}.
(c) Find the conjugate of $(1234)(56)$ by $a=(37)$ in S_{7}.
8. How many permutations of order 5 are there in S_{7} ?
9. How many permutations of order 6 are there in S_{10} ?
10. Let α and β be two permutations in S_{n}.
(a) Show that $\alpha \beta \alpha^{-1} \beta^{-1}$ is an even permutation.
(b) Show that $\alpha \beta$ is even if and only if α and β are both even, or both odd.
11. Let $\beta \in S_{7}$, and suppose $\beta^{4}=(2143567)$. Find β.
12. Find permutations α and β such that:
(a) $|\alpha|=2,|\beta|=2$, and $|\alpha \beta|=3$.
(b) $|\alpha|=3,|\beta|=3$, and $|\alpha \beta|=5$.

