Practice Quiz 3

- **1.** (a) Find the subgroup lattice of \mathbb{Z}_{36} .
 - (b) Make a table with all the elements of \mathbb{Z}_{36} , grouped according to their orders.
 - (c) What are all the possible orders, and how many elements of each possible order are there?
- **2.** (a) List of the elements of \mathbb{Z}_{40} that have order 10.
 - (b) Suppose |x| = 10. List of the elements of $\langle x \rangle$ that have order 10.
- **3.** Let G be a group, and H a subgroup of G. For any fixed $x \in G$, define the *conjugate* of H by x to be

$$xHx^{-1} = \{xhx^{-1} \mid h \in H\}.$$

Show that xHx^{-1} is a subgroup of G.

4. Let G be a group, and H a subgroup of G. Define the *normalizer* of H to be $N(H) = \{x \in G \mid xHx^{-1} = H\}.$

Show that N(H) is a subgroup of G.

- 5. Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{bmatrix}$ and $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{bmatrix}$. (a) Find $\alpha\beta$ and $\beta\alpha$.

 - (b) Compute the inverses of α , β , $\alpha\beta$, and $\beta\alpha$.
 - (c) Write α , β , $\alpha\beta$, and $\beta\alpha$ as products of disjoint cycles.
 - (d) Write α , β , $\alpha\beta$, and $\beta\alpha$ as products of transpositions.
 - (e) Find the orders of α , β , $\alpha\beta$, and $\beta\alpha$.
 - (f) Find the parity of α , β , $\alpha\beta$, and $\beta\alpha$.

- **6.** Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{bmatrix}$ and $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$.
 - (a) Find $\alpha\beta$ and $\beta\alpha$.
 - (b) Compute the inverses of α , β , $\alpha\beta$, and $\beta\alpha$.
 - (c) Write α , β , $\alpha\beta$, and $\beta\alpha$ as products of disjoint cycles.
 - (d) Write α , β , $\alpha\beta$, and $\beta\alpha$ as products of transpositions.
 - (e) Find the orders of α , β , $\alpha\beta$, and $\beta\alpha$.
 - (f) Find the parity of α , β , $\alpha\beta$, and $\beta\alpha$.
- 7. (a) Find the conjugate of (1234)(56) by a = (25) in S_7 .
 - (b) Find the conjugate of (1234)(56) by a = (27) in S_7 .
 - (c) Find the conjugate of (1234)(56) by a = (37) in S_7 .
- 8. How many permutations of order 5 are there in S_7 ?
- **9.** How many permutations of order 6 are there in S_{10} ?
- **10.** Let α and β be two permutations in S_n .
 - (a) Show that $\alpha\beta\alpha^{-1}\beta^{-1}$ is an even permutation.
 - (b) Show that $\alpha\beta$ is even if and only if α and β are both even, or both odd.
- **11.** Let $\beta \in S_7$, and suppose $\beta^4 = (2143567)$. Find β .
- **12.** Find permutations α and β such that:
 - (a) $|\alpha| = 2$, $|\beta| = 2$, and $|\alpha\beta| = 3$.
 - (b) $|\alpha| = 3$, $|\beta| = 3$, and $|\alpha\beta| = 5$.