Prof. Alexandru Suciu Group Theory

Practice Quiz 1

- **1.** Let $d = \gcd(20, 24)$.
 - (a) Find d.
 - (b) Find a pair of integers s and t such that 20s + 24t = d.
 - (c) Find the general solution for all the pairs of integers s and t such that 20s+24t = d.
- **2.** Suppose $a = p_1^4 p_2^5 p_3$ and $b = p_2^3 p_3^9 p_4 p_5^8$, where p_1, \ldots, p_5 are distinct primes.
 - (a) Find gcd(a, b).
 - (b) Find lcm(a, b).
 - (c) Check that $gcd(a, b) \cdot lcm(a, b) = ab$.
- **3.** Determine whether the following Latin square is the Cayley table of a group. If that's not the case, give a reason why not. If that's the case, give an example of a group whose Cayley table is this one.

	e	a	b	С	d
e	e	a	b	c e a d b	d
a	a	b	d	e	c
b	b	d	c	a	e
c	c	e	a	d	b
d	d	c	e	b	a

4. Determine whether the following Latin square is the Cayley table of a group. If that's not the case, give a reason why not. If that's the case, give an example of a group whose Cayley table is this one.

	e	a	b	c	d
e	e	a	b	С	d
a	a	c	e	d	b
b	b	d	c	a	e
c	c	e	d	b	a
d	d	$egin{array}{c} a \\ c \\ d \\ e \\ b \end{array}$	a	e	С

- **5.** Consider the group U(8).
 - (a) List all the elements in this group.
 - (b) Write down the Cayley table for this group.
 - (c) What is the (multiplicative) inverse of 7 in U(8)?
- **6.** Consider the group U(10).
 - (a) List all the elements in this group.
 - (b) Write down the Cayley table for this group.
 - (c) What is the (multiplicative) inverse of 7 in U(10)?
 - (d) Is the Cayley table for U(10) the same as the one for U(8), up to relabeling the elements?

7. Consider the matrix
$$A = \begin{pmatrix} 2 & 4 \\ 2 & 1 \end{pmatrix}$$
 in $\operatorname{GL}_2(\mathbb{Z}_{13})$. Find A^{-1} .

- 8. Consider the group $SL_2(\mathbb{Z}_3)$.
 - (a) List all the elements in this group.
 - (b) Find two matrices in $SL_2(\mathbb{Z}_3)$ which do not commute.
 - (c) Find two (distinct) matrices in $SL_2(\mathbb{Z}_3)$ which do commute.
- **9.** Let G a group with the following property: Whenever $a, b, c \in G$ and ab = ca, then b = c. Prove that G is abelian.
- 10. Let G a group, such that the square of any element is the identity. Prove that G is abelian.