Practice Quiz 1

1. Let $d=\operatorname{gcd}(20,24)$.
(a) Find d.
(b) Find a pair of integers s and t such that $20 s+24 t=d$.
(c) Find the general solution for all the pairs of integers s and t such that $20 s+24 t=d$.
2. Suppose $a=p_{1}^{4} p_{2}^{5} p_{3}$ and $b=p_{2}^{3} p_{3}^{9} p_{4} p_{5}^{8}$, where p_{1}, \ldots, p_{5} are distinct primes.
(a) Find $\operatorname{gcd}(a, b)$.
(b) Find $\operatorname{lcm}(a, b)$.
(c) Check that $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.
3. Determine whether the following Latin square is the Cayley table of a group. If that's not the case, give a reason why not. If that's the case, give an example of a group whose Cayley table is this one.

	e	a	b	c	d
e	e	a	b	c	d
a	a	b	d	e	c
b	b	d	c	a	e
c	c	e	a	d	b
d	d	c	e	b	a

4. Determine whether the following Latin square is the Cayley table of a group. If that's not the case, give a reason why not. If that's the case, give an example of a group whose Cayley table is this one.

	e	a	b	c	d
e	e	a	b	c	d
a	a	c	e	d	b
b	b	d	c	a	e
c	c	e	d	b	a
d	d	b	a	e	c

5. Consider the group $U(8)$.
(a) List all the elements in this group.
(b) Write down the Cayley table for this group.
(c) What is the (multiplicative) inverse of 7 in $U(8)$?
6. Consider the group $U(10)$.
(a) List all the elements in this group.
(b) Write down the Cayley table for this group.
(c) What is the (multiplicative) inverse of 7 in $U(10)$?
(d) Is the Cayley table for $U(10)$ the same as the one for $U(8)$, up to relabeling the elements?
7. Consider the matrix $A=\left(\begin{array}{ll}2 & 4 \\ 2 & 1\end{array}\right)$ in $\mathrm{GL}_{2}\left(\mathbb{Z}_{13}\right)$. Find A^{-1}.
8. Consider the group $\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$.
(a) List all the elements in this group.
(b) Find two matrices in $\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$ which do not commute.
(c) Find two (distinct) matrices in $\mathrm{SL}_{2}\left(\mathbb{Z}_{3}\right)$ which do commute.
9. Let G a group with the following property: Whenever $a, b, c \in G$ and $a b=c a$, then $b=c$. Prove that G is abelian.
10. Let G a group, such that the square of any element is the identity. Prove that G is abelian.
