Prof. Alexandru Suciu

МАТН 3175
Group Theory
Summer 2, 2020

The dihedral groups

The general setup. The dihedral group D_{n} is the group of symmetries of a regular polygon with n vertices. We think of this polygon as having vertices on the unit circle, with vertices labeled $0,1, \ldots, n-1$ starting at $(1,0)$ and proceeding counterclockwise at angles in multiples of $360 / n$ degrees, that is, $2 \pi / n$ radians.

There are two types of symmetries of the n-gon, each one giving rise to n elements in the group D_{n} :

- Rotations $R_{0}, R_{1}, \ldots, R_{n-1}$, where R_{k} is rotation of angle $2 \pi k / n$.
- Reflections $S_{0}, S_{1}, \ldots, S_{n-1}$, where S_{k} is reflection about the line through the origin and making an angle of $\pi k / n$ with the horizontal axis.

The group operation is given by composition of symmetries: if a and b are two elements in D_{n}, then $a \cdot b=b \circ a$. That is to say, $a \cdot b$ is the symmetry obtained by applying first a, followed by b.

The elements of D_{n} can be thought as linear transformations of the plane, leaving the given n-gon invariant. This lets us represent the elements of D_{n} as 2×2 matrices, with group operation corresponding to matrix multiplication. Specifically,

$$
\begin{aligned}
R_{k} & =\left(\begin{array}{rr}
\cos (2 \pi k / n) & -\sin (2 \pi k / n) \\
\sin (2 \pi k / n) & \cos (2 \pi k / n)
\end{array}\right), \\
S_{k} & =\left(\begin{array}{rr}
\cos (2 \pi k / n) & \sin (2 \pi k / n) \\
\sin (2 \pi k / n) & -\cos (2 \pi k / n)
\end{array}\right) .
\end{aligned}
$$

It is now a simple matter to verify that the following relations hold in D_{n} :

$$
\begin{aligned}
R_{i} \cdot R_{j} & =R_{i+j} \\
R_{i} \cdot S_{j} & =S_{i+j} \\
S_{i} \cdot R_{j} & =S_{i-j} \\
S_{i} \cdot S_{j} & =R_{i-j}
\end{aligned}
$$

where $0 \leq i, j \leq n-1$, and both $i+j$ and $i-j$ are computed modulo n.
The Cayley table for D_{n} can be readily computed from the above relations. In particular, we see that R_{0} is the identity, $R_{i}^{-1}=R_{n-i}$, and $S_{i}^{-1}=S_{i}$.

The group D_{3}. This is the symmetry group of the equilateral triangle, with vertices on the unit circle, at angles $0,2 \pi / 3$, and $4 \pi / 3$. The matrix representation is given by

$$
\begin{array}{lll}
R_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), & R_{1}=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), & R_{2}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right), \\
S_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & S_{1}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right), & S_{2}=\left(\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right) .
\end{array}
$$

while the Cayley table for D_{3} is:

	R_{0}	R_{1}	R_{2}	S_{0}	S_{1}	S_{2}
R_{0}	R_{0}	R_{1}	R_{2}	S_{0}	S_{1}	S_{2}
R_{1}	R_{1}	R_{2}	R_{0}	S_{1}	S_{2}	S_{0}
R_{2}	R_{2}	R_{0}	R_{1}	S_{2}	S_{0}	S_{1}
S_{0}	S_{0}	S_{2}	S_{1}	R_{0}	R_{2}	R_{1}
S_{1}	S_{1}	S_{0}	S_{2}	R_{1}	R_{0}	R_{2}
S_{2}	S_{2}	S_{1}	S_{0}	R_{2}	R_{1}	R_{0}

The group D_{4}. This is the symmetry group of the square with vertices on the unit circle, at angles $0, \pi / 2, \pi$, and $3 \pi / 2$. The matrix representation is given by

$$
\begin{array}{llll}
R_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), & R_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), & R_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), & R_{3}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
S_{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), & S_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), & S_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), & S_{3}=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) .
\end{array}
$$

while the Cayley table for D_{4} is:

	R_{0}	R_{1}	R_{2}	R_{3}	S_{0}	S_{1}	S_{2}	S_{3}
R_{0}	R_{0}	R_{1}	R_{2}	R_{3}	S_{0}	S_{1}	S_{2}	S_{3}
R_{1}	R_{1}	R_{2}	R_{3}	R_{0}	S_{1}	S_{2}	S_{3}	S_{0}
R_{2}	R_{2}	R_{3}	R_{0}	R_{1}	S_{2}	S_{3}	S_{0}	S_{1}
R_{3}	R_{3}	R_{0}	R_{1}	R_{2}	S_{3}	S_{0}	S_{1}	S_{2}
S_{0}	S_{0}	S_{3}	S_{2}	S_{1}	R_{0}	R_{3}	R_{2}	R_{1}
S_{1}	S_{1}	S_{0}	S_{3}	S_{2}	R_{1}	R_{0}	R_{3}	R_{2}
S_{2}	S_{2}	S_{1}	S_{0}	S_{3}	R_{2}	R_{1}	R_{0}	R_{3}
S_{3}	S_{3}	S_{2}	S_{1}	S_{0}	R_{3}	R_{2}	R_{1}	R_{0}

