
Prof. Alexandru Suciu

MATH 3175 Group Theory Summer 2, 2022

Solutions to Midterm Exam

1. Prove the following statements.

(i) All cyclic groups are abelian.

Let G = 〈a〉 = {as | s ∈ Z} be a cyclic group. Then as · at = as+t = at · as for
all s, t ∈ Z. Thus, G is abelian.

(ii) All groups of prime order are cyclic.

Let G be a group of order p, where p is a prime. If G is trivial, then G = 〈e〉
and we are done. Otherwise, there is a ∈ G with a 6= e. Set k = ord a. Then
k 6= 1 (since a 6= e) and k | p (by Lagrange’s theorem). Since p is prime, this
implies k = p, and so G = 〈a〉 = {e, a, . . . , ap−1}.

(iii) Any two cyclic groups of the same size are isomorphic.

Let G = 〈a〉 = {as | s ∈ Z} and H = 〈b〉 = {bs | s ∈ Z} be two cyclic groups of
the same size. Then the map ϕ : G→ H, as 7→ bs is an isomorphism. Indeed,
ϕ(asat) = ϕ(as)ϕ(at), and so ϕ is a homomorphism, and since the groups are
both infinite or both finite (of the same order), the map ϕ is a bijection (with
inverse ϕ−1 : H → G, bs 7→ as).

2. Let G = GL(2, 2) be the group of all invertible 2× 2 matrices with entries in Z2,
with group operation given my matrix multiplication.

(i) List all the elements of G and find their orders.

There are 24 = 16 matrices of size 2×2 with entries in Z2 = {0, 1}; of those, 6
have determinant 1, and thus belong to G; the remaining 8 have determinant
0, and thus do not belong to G. Explicitly,

G =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)}
.

Their respective orders are: {1, 2, 2, 2, 3, 3}.
(ii) Does G contain a subgroup of order 3? Why, or why not?

Yes, the subgroup generated by one of the matrices of order 3, say, ( 0 1
1 1 ).

(iii) Is G a cyclic group? Why, or why not?

No, since it has no elements of order 6.

(iv) Is G an abelian group? Why, or why not?

No, since ( 0 1
1 0 ) · ( 0 1

1 1 ) = ( 1 1
0 1 ), is different from ( 0 1

1 1 ) · ( 0 1
1 0 ) = ( 1 0

1 1 ).
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3. Consider the cyclic group Z8 = {[0]8, . . . , [7]8} and the quaternion group Q8 =
{±1,±i,±j,±k}. For each of these two groups:

(i) List all the subgroups, and display the information as a lattice of subgroups.

Subgroups of Z8: {0}, {0, 4}, {0, 2, 4, 6}, Z8.

Subgroups of Q8: {1}, {±1}, {±1,±i}, {±1,±j}, {±1,±k}, Q8.

(ii) In each case, how many distinct subgroups are there?

Z8 has 4 subgroups, while Q8 has 6 subgroups.

(iii) In each case, how many isomorphism classes of subgroups are there?

There are 4 isomorphism classes of subgroups of Z8; up to isomorphism, those
subgroups are: {0}, Z2, Z4, and Z8.

There are 4 isomorphism classes of subgroups of Q8; up to isomorphism, those
subgroups are: {0}, Z2, Z4, and Q8.

(iv) In each case, how many cyclic subgroups are there?

Z8 has 4 cyclic subgroups (all subgroups of a cyclic group are cyclic!), while
Q8 has 5 cyclic subgroups (which fall into 3 isomorphism classes).

4. Let G be a group, and let H ≤ G be a subgroup.

(i) Show that, for every element a ∈ G, the right coset Ha coincides (up to
inversion in G) with the left coset a−1H.

g ∈ Ha⇐⇒ ga−1 ∈ H ⇐⇒ (ga−1)−1 ∈ H ⇐⇒ ag−1 ∈ H ⇐⇒ g−1 ∈ a−1H.

(ii) Use part (i) to construct a bijection between the set of right cosets of H and
the set of left cosets of H.

By part (i), the inversion map G→ G, g 7→ g−1 (which is a bijection) induces
a bijection

{right cosets of H in G} → {left cosets of H in G}
given by Ha 7→ a−1H; its inverse is given by aH 7→ Ha−1.

(iii) Assume now that G is finite. Use part (ii) to show that the number of left
cosets of H is equal to the number of right cosets of H.

Since the sets of right and left cosets are in bijection (by part (ii)), and since
they are both finite sets (since G is finite), the two sets must have the same
number of elements.
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5. Let C× be the multiplicative group of non-zero complex numbers, and let T =
{z ∈ C× : |z| = 1} be the subset of complex numbers with absolute value equal
to 1.

(i) Show that T is a subgroup of C×.

First note that |zw| = |z| · |w|, and so |z−1| = |z|, for every z, w ∈ C×. Thus,
if z, w ∈ T , that is, |z| = |w| = 1, then∣∣zw−1

∣∣ = |z| ·
∣∣w−1

∣∣ = |z| · |w| = 1 · 1 = 1.

(ii) Sketch T in the x-y plane (where recall z = x + iy ∈ C corresponds to the
point in R2 with coordinates (x, y).)

Since |z| =
√
x2 + y2, we have that T = {(x, y) | x2 + y2 = 1} is the unit

circle in the plane.

(iii) Describe the (right) cosets of T in geometric terms and sketch at least 4 of
these cosets, labelling each one accordingly.

The right cosets of T are of the form T · r = {z ∈ C× | |z| = r} for all r real,
r > 0. That is, they are concentric circles of arbitrary positive radius r.

6. Let G be a group of order 21. Suppose that G has precisely one subgroup of order
3, and one subgroup of order 7. Show that G is cyclic.

Let H be the unique subgroup of order 3 and K the unique subgroup of order
7. Then |H ∪K| ≤ |H| + |K| − |{e}| = 3 + 7 − 1 = 9. [In fact, H ∩ K is the
trivial subgroup, since any nontrivial element of H must have order 3, and any
non-trivial element of K must have order 7; thus, |H ∪K| = 9.] Therefore, there
must be an element g ∈ G \ (H ∪K). Note that
• |g| 6= 1, since g 6= e.
• |g| 6= 3, since otherwise 〈g〉 would be a subgroup of order 3 distinct from H.
• |g| 6= 7, since otherwise 〈g〉 would be a subgroup of order 7 distinct from K.

On the other hand, we know from Lagrange’s theorem that ord(g) divides |G| =
21. Hence, we must have ord(g) = 21, and so G = 〈g〉 is cyclic.

7. Let ϕ : G→ H be a homomorphism. Prove the following:

(i) If ϕ is injective, then |G| divides |H|.
Since the problem asks about divisibility of orders, the groups G and H must
be finite. In general, we know that im(ϕ) := ϕ(G) is always a subgroup of H,
and that the co-restriction ϕ : G→ im(ϕ) is a surjective homomorphism. Now,
since ϕ is assumed to be injective, the map ϕ : G→ im(ϕ) is an isomorphism.
Consequently, |G| = |im(ϕ)|. But, by Lagrange’s theorem, |im(ϕ)|must divide
|H|, and so |G| | |H|.
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(ii) If ϕ is surjective, and G is abelian, then H is also abelian.

Let h1, h2 ∈ H. Then, by surjectivity of ϕ, there exist g1, g2 ∈ G such that
ϕ(g1) = h1 and ϕ(g2) = h2. Hence, since ϕ is a homomorphism and G is
abelian, we have:

h1h2 = ϕ(g1)ϕ(g2) = ϕ(g1g2) = ϕ(g2g1) = ϕ(g2)ϕ(g1) = h2h1.

(iii) If ϕ is surjective, and G is cyclic, then H is also cyclic.

Suppose G = 〈a〉, and let b = ϕ(a). Then, since ϕ is a surjective homomor-
phism, we have that H = 〈b〉. Indeed, if h ∈ H, then h = ϕ(g) for some
g ∈ G; but g = as for some s ∈ Z, and so h = ϕ(as) = ϕ(a)s = bs, and so
h ∈ 〈b〉.

8. For each of the following pairs of groups, decide whether they are isomorphic or
not. In each case, give a brief reason why.

(i) Z×
9 and Z8.

No: Z×
9 = {1, 2, 4, 5, 7, 8} has order φ(9) = 6, which is different from |Z8| = 8.

(ii) Z×
16 and Z8.

No: Both Z×
16 = {1, 3, 5, 7, 9, 11, 13, 15} have the same order (8), but Z×

16 is
not cyclic (it has no element of order 8), whereas Z8 is cyclic.

(iii) Z2 × Z3 and Z6.

Yes: The group Z2 × Z3 is cyclic of order 6, generated by ([1]2, [1]3), and so
the map ϕ : Z2 × Z3 → Z6, ([1]2, [1]3) 7→ [1]6 is an isomorphism.

(iv) Z2 × Z8 and Z4 × Z4.

No: Both groups are abelian and have the same order (16), but the first has
elements of order 8 (for instance, ([0]2, [1]8)), whereas the second has no such
elements (all its elements have order 1, 2, or 4).


