Prof. Alexandru Suciu

Assignment 5

1. Let G_{1} and G_{2} be two groups, with identities e_{1} and e_{2}, respectively. Let $G=G_{1} \times G_{2}$ and let $H=\left\{\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2}: g_{2}=e_{2}\right\}$. Show that
(i) H is a normal subgroup of G.
(ii) $H \cong G_{1}$.
(iii) $G / H \cong G_{2}$.
2. Let H be a subgroup of G, and define its normalizer as $N(H):=\left\{g \in G: g H g^{-1}=H\right\}$.
(i) Show that $N(H)$ is a subgroup of G.
(ii) Show that the subgroups of G that are conjugate to H are in one-to-one correspondence with the left cosets of $N(H)$ in G.
3. Let D_{n} be the dihedral group of order $2 n$. Decide whether the following pairs of groups are isomorphic or not. In each case, explain why.
(i) D_{8} and $Q_{8} \times \mathbb{Z}_{2}$.
(ii) D_{6} and $S_{3} \times \mathbb{Z}_{2}$.
(iii) D_{6} and A_{4}.
(iv) $D_{6} \times \mathbb{Z}_{2}$ and S_{4}.
4. Let $G=\mathbb{Z}_{4} \times \mathbb{Z}_{6}$. Compute the factor groups $G /\langle(2,3)\rangle$ and $G /\langle(3,3)\rangle$. (In each case, write the result in terms of known finite groups, and explain your answer.)
5. For each of the following groups, find all the conjugacy classes and write out the conjugacy class equation:
(i) D_{5}.
(ii) D_{6}.
(iii) A_{4}.
6. The alternating group A_{5} has 5 conjugacy classes, of sizes $1,12,12,15,20$. Use this information to prove that A_{5} is a simple group.
