MATH 3175

Prof. Alexandru Suciu

Group Theory

Summer 2, 2022

Assignment 5

- **1.** Let G_1 and G_2 be two groups, with identities e_1 and e_2 , respectively. Let $G = G_1 \times G_2$ and let $H = \{(g_1, g_2) \in G_1 \times G_2 : g_2 = e_2\}$. Show that
 - (i) H is a normal subgroup of G.
 - (ii) $H \cong G_1$.
 - (iii) $G/H \cong G_2$.
- **2.** Let H be a subgroup of G, and define its normalizer as $N(H) := \{g \in G : gHg^{-1} = H\}$.
 - (i) Show that N(H) is a subgroup of G.
 - (ii) Show that the subgroups of G that are conjugate to H are in one-to-one correspondence with the left cosets of N(H) in G.
- **3.** Let D_n be the dihedral group of order 2n. Decide whether the following pairs of groups are isomorphic or not. In each case, explain why.
 - (i) D_8 and $Q_8 \times \mathbb{Z}_2$.
 - (ii) D_6 and $S_3 \times \mathbb{Z}_2$.
 - (iii) D_6 and A_4 .
 - (iv) $D_6 \times \mathbb{Z}_2$ and S_4 .
- 4. Let $G = \mathbb{Z}_4 \times \mathbb{Z}_6$. Compute the factor groups $G/\langle (2,3) \rangle$ and $G/\langle (3,3) \rangle$. (In each case, write the result in terms of known finite groups, and explain your answer.)
- 5. For each of the following groups, find all the conjugacy classes and write out the conjugacy class equation:
 - (i) D_5 .
 - (ii) D_6 .
 - (iii) A_4 .
- 6. The alternating group A_5 has 5 conjugacy classes, of sizes 1, 12, 12, 15, 20. Use this information to prove that A_5 is a simple group.