MATH 3175

Prof. Alexandru Suciu

Group Theory

Summer 2, 2022

Assignment 4

- 1. Let S_n be the symmetric group on n elements, let $A_n \leq S_n$ be the alternating subgroup, consisting of all even permutations). Given a subgroup $H \leq S_n$, show that either
 - (a) every permutation in H is even; or
 - (b) the set $H \cap A_n$ is properly contained in H, and, moreover, half the permutations in H are even and half are odd.
- **2.** Consider the cyclic permutation $\sigma = (1, 2, 3, 4, 5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} \in S_5$ and let $H = \langle \sigma \rangle$ be the cyclic subgroup generated by σ .
 - (i) Show that H is a subgroup of A_5 .
 - (ii) What is the index of H in A_5 ?
 - (iii) Is H a normal subgroup of A_5 ?
- **3.** Let G be a group, let $H \leq G$ be a subgroup, and let $N \triangleleft G$ be a normal subgroup.
 - (i) Show that $H \cap N$ is a normal subgroup of H.
 - (ii) Suppose now that H is a normal subgroup of G. Show that $H \cap N$ is a normal subgroup of G.

4. Let G be set of all 2×2 matrices in $\operatorname{GL}_2(\mathbb{Z}_5)$ of the form $\begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix}$, with $c, d \in \mathbb{Z}_5$ and $d \neq 0$.

- (i) Show that G is a subgroup of $GL_2(\mathbb{Z}_5)$.
- (ii) Find the order of G.
- (iii) Is G a normal subgroup of $GL_2(\mathbb{Z}_5)$?
- (iv) Let N be the subset of all matrices in G of the form $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$ with $c \in \mathbb{Z}_5$. Show that N is a normal subgroup of G.
- (v) Show that the factor group G/N is cyclic of order 4.
- 5. Let $G = \mathbb{Z}_{16} \times \mathbb{Z}_4$.
 - (i) Construct a surjective homomorphism $\varphi \colon G \to \mathbb{Z}_8$.
 - (ii) What is $\ker(\varphi)$?
 - (iii) Show that there is no surjective homomorphism $\varphi \colon G \to \mathbb{Z}_8 \times \mathbb{Z}_8$.