Assignment 4

1. Let S_{n} be the symmetric group on n elements, let $A_{n} \leq S_{n}$ be the alternating subgroup, consisting of all even permutations). Given a subgroup $H \leq S_{n}$, show that either
(a) every permutation in H is even; or
(b) the set $H \cap A_{n}$ is properly contained in H, and, moreover, half the permutations in H are even and half are odd.
2. Consider the cyclic permutation $\sigma=(1,2,3,4,5)=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right) \in S_{5}$ and let $H=\langle\sigma\rangle$ be the cyclic subgroup generated by σ.
(i) Show that H is a subgroup of A_{5}.
(ii) What is the index of H in A_{5} ?
(iii) Is H a normal subgroup of A_{5} ?
3. Let G be a group, let $H \leq G$ be a subgroup, and let $N \triangleleft G$ be a normal subgroup.
(i) Show that $H \cap N$ is a normal subgroup of H.
(ii) Suppose now that H is a normal subgroup of G. Show that $H \cap N$ is a normal subgroup of G.
4. Let G be set of all 2×2 matrices in $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$ of the form $\left(\begin{array}{ll}1 & 0 \\ c & d\end{array}\right)$, with $c, d \in \mathbb{Z}_{5}$ and $d \neq 0$.
(i) Show that G is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$.
(ii) Find the order of G.
(iii) Is G a normal subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$?
(iv) Let N be the subset of all matrices in G of the form $\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right)$ with $c \in \mathbb{Z}_{5}$. Show that N is a normal subgroup of G.
(v) Show that the factor group G / N is cyclic of order 4.
5. Let $G=\mathbb{Z}_{16} \times \mathbb{Z}_{4}$.
(i) Construct a surjective homomorphism $\varphi: G \rightarrow \mathbb{Z}_{8}$.
(ii) What is $\operatorname{ker}(\varphi)$?
(iii) Show that there is no surjective homomorphism $\varphi: G \rightarrow \mathbb{Z}_{8} \times \mathbb{Z}_{8}$.
