Solutions for Assignment 4

1. Let S_{n} be the symmetric group on n elements, let $A_{n} \leq S_{n}$ be the alternating subgroup, consisting of all even permutations). Given a subgroup $H \leq S_{n}$, show that either
(a) every permutation in H is even; or
(b) the set $H \cap A_{n}$ is properly contained in H, and, moreover, half the permutations in H are even and half are odd.
Suppose $H \nsubseteq A_{n}$. There is then an odd permutation $\sigma \in H$, and so $\sigma \in H \backslash H \cap A_{n}$, showing that $H \cap A_{n} \varsubsetneqq H$.

Now note that the map $f: S_{n} \rightarrow S_{n}, f(x)=\sigma x$ restricts to a bijection from A_{n} to its (left) coset, $\sigma A_{n}=S_{n} \backslash A_{n}$. Since $\sigma \in H$, this map further restricts to a bijection from $H \cap A_{n}$ to $\sigma\left(H \cap A_{n}\right)$, which is a bijection between the set of even permutations in H and the set of odd permutations in H. This proves the claim.
2. Consider the cyclic permutation $\sigma=(1,2,3,4,5)=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1\end{array}\right) \in S_{5}$ and let $H=\langle\sigma\rangle$ be the cyclic subgroup generated by σ.
(i) Show that H is a subgroup of A_{5}.

We have $(1,2,3,4,5)=(1,2) \cdot(2,3) \cdot(3,4) \cdot(4,5)$, and so $\sigma \in A_{5}$, which implies that $H=\langle\sigma\rangle$ is contained in A_{5}, and thus $H \leq A_{5}$.
(ii) What is the index of H in A_{5} ?
$\left[A_{5}: H\right]=\left|A_{5}\right| /|H|=60 / 5=12$.
(iii) Is H a normal subgroup of A_{5} ?

Take $a=(1,2) \in S_{5}$. Then $a \sigma a^{-1}=(2,3) \cdot(3,4) \cdot(4,5) \cdot(1,2)=(1,3,4,5,2) \notin H$, and so H is not a normal subgroup of A_{5}. (Alternate proof: H is a non-trivial, proper subgroup of A_{5}; since A_{5} is known to be a simple group, $H \nrightarrow A_{5}$.)
3. Let G be a group, let $H \leq G$ be a subgroup, and let $N \triangleleft G$ be a normal subgroup.
(i) Show that $H \cap N$ is a normal subgroup of H.

We already know that the intersection of two subgroups is a subgroup; thus, $H \cap N \leq H$. Now let $g \in H \cap N$ and $h \in H$. Then $h g h^{-1} \in H$ (since H is a group) and $h g h^{-1} \in N$ (since N is a normal subgroup of G). Hence, $h g h^{-1} \in H \cap N$, showing that $H \cap N \triangleleft H$.
(ii) Suppose now that H is a normal subgroup of G. Show that $H \cap N$ is a normal subgroup of G.

Let $g \in H \cap N$ and $x \in G$. Then $x g x^{-1} \in H$ (since $\left.H \triangleleft G\right)$ and $x g x^{-1} \in N$ (since $\left.N \triangleleft G\right)$. Hence, $x g x^{-1} \in H \cap N$, showing that $H \cap N \triangleleft G$.
4. Let G be set of all 2×2 matrices in $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$ of the form $\left(\begin{array}{ll}1 & 0 \\ c & d\end{array}\right)$, with $c, d \in \mathbb{Z}_{5}$ and $d \neq 0$.
(i) Show that G is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$.

Let $A_{1}=\left(\begin{array}{cc}1 & 0 \\ c_{1} & d_{1}\end{array}\right)$ and $A_{2}=\left(\begin{array}{cc}1 & 0 \\ c_{2} & d_{2}\end{array}\right)$ be two matrices in G. Then

$$
A_{1} \cdot A_{2}=\left(\begin{array}{cc}
1 & 0 \\
c_{1} & d_{1}
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
c_{1}+c_{2} d_{1} & d_{1} d_{2}
\end{array}\right)
$$

also belongs to G. Since $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$ is a finite group, this shows that $G \leq \mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$.
(ii) Find the order of G.

Note that $c \in \mathbb{Z}_{5}$ and $d \in \mathbb{Z}_{5}^{\times}$, with no other constraints. Hence, $|G|=\left|\mathbb{Z}_{5}\right| \cdot\left|\mathbb{Z}_{5}^{\times}\right|=5 \cdot 4=20$.
(iii) Is G a normal subgroup of $\mathrm{GL}_{2}\left(\mathbb{Z}_{5}\right)$?

$$
\text { No, since }\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right) \notin G .
$$

(iv) Let N be the subset of all matrices in G of the form $\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right)$ with $c \in \mathbb{Z}_{5}$. Show that N is a normal subgroup of G.
Yes, since $\left(\begin{array}{ll}1 & 0 \\ a & b\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right) \cdot\left(\begin{array}{cc}1 & 0 \\ a & b\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & 0 \\ a+b c & b\end{array}\right) \cdot\left(\begin{array}{cc}1 & 0 \\ -a / b & 1 / b\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ b c & 1\end{array}\right) \in N$.
(v) Show that the factor group G / N is cyclic of order 4 .

Define a map $\varphi: G \rightarrow \mathbb{Z}_{5}^{\times}$by sending a matrix $A=\left(\begin{array}{ll}1 & 0 \\ c & d\end{array}\right)$ to d. By the computation in part (i), we have that $\varphi\left(A_{1} A_{2}\right)=d_{1} d_{2}=\varphi\left(A_{1}\right) \varphi\left(A_{2}\right)$, and this shows that φ is a homomorphism. Clearly, φ is surjective and its kernel is N. Thus, by the First Isomorphism Theorem, $G / N \cong$ $\operatorname{im}(\varphi)=\mathbb{Z}_{5}^{\times} \cong \mathbb{Z}_{4}$, a cyclic group of order 4 .
5. Let $G=\mathbb{Z}_{16} \times \mathbb{Z}_{4}$.
(i) Construct a surjective homomorphism $\varphi: G \rightarrow \mathbb{Z}_{8}$.

Set, for instance, $\varphi\left([x]_{16},[y]_{4}\right)=[x]_{8}$.
(ii) What is $\operatorname{ker}(\varphi)$?
$\operatorname{ker}(\varphi)=\left\{0,[8]_{16}\right\} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
(iii) Show that there is no surjective homomorphism $\varphi: G \rightarrow \mathbb{Z}_{8} \times \mathbb{Z}_{8}$.

Suppose $\varphi: G \rightarrow \mathbb{Z}_{8} \times \mathbb{Z}_{8}$ is a surjective homomorphism. Let $K=\operatorname{ker}(\varphi)$. Then, by the First Isomorphism Theorem, $G / K \cong \operatorname{im}(\varphi)=\mathbb{Z}_{8} \times \mathbb{Z}_{8}$, and so $|K|=|G| /\left|\mathbb{Z}_{8} \times \mathbb{Z}_{8}\right|=64 / 64=1$. This shows that K is the trivial subgroups, that is, φ is injective. Therefore, φ is an isomorphism.
But $\left([1]_{16},[0]_{4}\right)$ is an element of order 16 in G, whereas every element in $\mathbb{Z}_{8} \times \mathbb{Z}_{8}$ has order at most 8. Thus, $G \nsubseteq \mathbb{Z}_{8} \times \mathbb{Z}_{8}$, which is a contradiction. Hence, the claim is proved.

