MATH 3175

Prof. Alexandru Suciu

Group Theory

Summer 2, 2022

Solutions for Assignment 4

- 1. Let S_n be the symmetric group on n elements, let $A_n \leq S_n$ be the alternating subgroup, consisting of all even permutations). Given a subgroup $H \leq S_n$, show that either
 - (a) every permutation in H is even; or
 - (b) the set $H \cap A_n$ is properly contained in H, and, moreover, half the permutations in H are even and half are odd.

Suppose $H \not\subseteq A_n$. There is then an odd permutation $\sigma \in H$, and so $\sigma \in H \setminus H \cap A_n$, showing that $H \cap A_n \subsetneq H$.

Now note that the map $f: S_n \to S_n$, $f(x) = \sigma x$ restricts to a bijection from A_n to its (left) coset, $\sigma A_n = S_n \setminus A_n$. Since $\sigma \in H$, this map further restricts to a bijection from $H \cap A_n$ to $\sigma(H \cap A_n)$, which is a bijection between the set of even permutations in H and the set of odd permutations in H. This proves the claim.

- **2.** Consider the cyclic permutation $\sigma = (1, 2, 3, 4, 5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix} \in S_5$ and let $H = \langle \sigma \rangle$ be the cyclic subgroup generated by σ .
 - (i) Show that H is a subgroup of A_5 . We have $(1, 2, 3, 4, 5) = (1, 2) \cdot (2, 3) \cdot (3, 4) \cdot (4, 5)$, and so $\sigma \in A_5$, which implies that $H = \langle \sigma \rangle$ is contained in A_5 , and thus $H \leq A_5$.
 - (ii) What is the index of H in A_5 ? $[A_5:H] = |A_5| / |H| = 60/5 = 12.$
 - (iii) Is H a normal subgroup of A_5 ?

Take $a = (1, 2) \in S_5$. Then $a\sigma a^{-1} = (2, 3) \cdot (3, 4) \cdot (4, 5) \cdot (1, 2) = (1, 3, 4, 5, 2) \notin H$, and so H is not a normal subgroup of A_5 . (Alternate proof: H is a non-trivial, proper subgroup of A_5 ; since A_5 is known to be a simple group, $H \not \triangleleft A_5$.)

- **3.** Let G be a group, let $H \leq G$ be a subgroup, and let $N \triangleleft G$ be a normal subgroup.
 - (i) Show that $H \cap N$ is a normal subgroup of H.

We already know that the intersection of two subgroups is a subgroup; thus, $H \cap N \leq H$. Now let $g \in H \cap N$ and $h \in H$. Then $hgh^{-1} \in H$ (since H is a group) and $hgh^{-1} \in N$ (since N is a normal subgroup of G). Hence, $hgh^{-1} \in H \cap N$, showing that $H \cap N \triangleleft H$.

(ii) Suppose now that H is a normal subgroup of G. Show that $H \cap N$ is a normal subgroup of G. Let $g \in H \cap N$ and $x \in G$. Then $xgx^{-1} \in H$ (since $H \triangleleft G$) and $xgx^{-1} \in N$ (since $N \triangleleft G$). Hence, $xgx^{-1} \in H \cap N$, showing that $H \cap N \triangleleft G$.

4. Let G be set of all 2×2 matrices in $\operatorname{GL}_2(\mathbb{Z}_5)$ of the form $\begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix}$, with $c, d \in \mathbb{Z}_5$ and $d \neq 0$.

(i) Show that G is a subgroup of $GL_2(\mathbb{Z}_5)$.

Let
$$A_1 = \begin{pmatrix} 1 & 0 \\ c_1 & d_1 \end{pmatrix}$$
 and $A_2 = \begin{pmatrix} 1 & 0 \\ c_2 & d_2 \end{pmatrix}$ be two matrices in G . Then
$$A_1 \cdot A_2 = \begin{pmatrix} 1 & 0 \\ c_1 & d_1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ c_1 + c_2 d_1 & d_1 d_2 \end{pmatrix} \cdot$$

also belongs to G. Since $\operatorname{GL}_2(\mathbb{Z}_5)$ is a finite group, this shows that $G \leq \operatorname{GL}_2(\mathbb{Z}_5)$.

(ii) Find the order of G.

Note that $c \in \mathbb{Z}_5$ and $d \in \mathbb{Z}_5^{\times}$, with no other constraints. Hence, $|G| = |\mathbb{Z}_5| \cdot |\mathbb{Z}_5^{\times}| = 5 \cdot 4 = 20$.

(iii) Is G a normal subgroup of $GL_2(\mathbb{Z}_5)$?

No, since
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \notin G.$$

(iv) Let N be the subset of all matrices in G of the form $\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$ with $c \in \mathbb{Z}_5$. Show that N is a normal subgroup of G.

Yes, since
$$\begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ a + bc & b \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -a/b & 1/b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ bc & 1 \end{pmatrix} \in N.$$

(v) Show that the factor group G/N is cyclic of order 4.

Define a map $\varphi \colon G \to \mathbb{Z}_5^{\times}$ by sending a matrix $A = \begin{pmatrix} 1 & 0 \\ c & d \end{pmatrix}$ to d. By the computation in part (i), we have that $\varphi(A_1A_2) = d_1d_2 = \varphi(A_1)\varphi(A_2)$, and this shows that φ is a homomorphism. Clearly, φ is surjective and its kernel is N. Thus, by the First Isomorphism Theorem, $G/N \cong \operatorname{im}(\varphi) = \mathbb{Z}_5^{\times} \cong \mathbb{Z}_4$, a cyclic group of order 4.

- **5.** Let $G = \mathbb{Z}_{16} \times \mathbb{Z}_4$.
 - (i) Construct a surjective homomorphism $\varphi \colon G \to \mathbb{Z}_8$. Set, for instance, $\varphi([x]_{16}, [y]_4) = [x]_8$.
 - (ii) What is $\ker(\varphi)$? $\ker(\varphi) = \{0, [8]_{16}\} \times \mathbb{Z}_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_4.$
 - (iii) Show that there is no surjective homomorphism $\varphi \colon G \to \mathbb{Z}_8 \times \mathbb{Z}_8$.

Suppose $\varphi: G \to \mathbb{Z}_8 \times \mathbb{Z}_8$ is a surjective homomorphism. Let $K = \ker(\varphi)$. Then, by the First Isomorphism Theorem, $G/K \cong \operatorname{im}(\varphi) = \mathbb{Z}_8 \times \mathbb{Z}_8$, and so $|K| = |G| / |\mathbb{Z}_8 \times \mathbb{Z}_8| = 64/64 = 1$. This shows that K is the trivial subgroups, that is, φ is injective. Therefore, φ is an isomorphism.

But $([1]_{16}, [0]_4)$ is an element of order 16 in G, whereas every element in $\mathbb{Z}_8 \times \mathbb{Z}_8$ has order at most 8. Thus, $G \not\cong \mathbb{Z}_8 \times \mathbb{Z}_8$, which is a contradiction. Hence, the claim is proved.