Assignment 3

1. Let $G=\langle a\rangle$ be a finite cyclic group of order n.
(i) For an element $a^{k} \in G$ with $0<k<n$, show that the order of a^{k} is equal to the order of the cyclic subgroup $\left\langle a^{k}\right\rangle$.
(ii) Show that $\left\langle a^{k}\right\rangle=\left\{a^{k s}: s \in \mathbb{Z}\right\}=\left\{a^{k s} a^{n t}: s, t \in \mathbb{Z}\right\}$.
(iii) Let $d=\operatorname{gcd}(n, k)$. Use parts (i) and (ii) to show that

$$
\operatorname{ord} a^{k}=n / d
$$

2. Let G be a cyclic group of size at least 3 .
(i) Show that G has at least 2 distinct generators.
(ii) If G is finite, show that G has an even number of distinct generators.
3. For each of the following groups, find all their cyclic subgroups:
(i) \mathbb{Z}_{14}^{\times}.
(ii) \mathbb{Z}_{20}^{\times}.
(iii) $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$.
4. Let $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group of order 8. Find all the subgroups of Q_{8} and draw the corresponding lattice of subgroups.
5. Let $H=\left\{(x, y) \in \mathbb{R}^{2}: x+y=0\right\}$.
(i) Sketch H in the plane.
(ii) Consider \mathbb{R}^{2} as a group under vector addition. Show that H is a subgroup of \mathbb{R}^{2}. Is H commutative?
(iii) Describe the cosets of H in geometric terms and make a sketch of a few of the cosets.
6. Let S_{4} be the group of permutations of the set $\{1,2,3,4\}$. Consider the subgroup H generated by the cyclic permutation $\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$.
(i) Write down all the right cosets and all the left cosets of H in S_{4}. (Make sure to indicate all the elements in each coset.)
(ii) What is the index of H in S_{4} ?
