MATH 3175

Prof. Alexandru Suciu Group Theory

Summer 2, 2022

Assignment 3

- **1.** Let $G = \langle a \rangle$ be a finite cyclic group of order n.
 - (i) For an element $a^k \in G$ with 0 < k < n, show that the order of a^k is equal to the order of the cyclic subgroup $\langle a^k \rangle$.
 - (ii) Show that $\langle a^k \rangle = \{a^{ks} : s \in \mathbb{Z}\} = \{a^{ks}a^{nt} : s, t \in \mathbb{Z}\}.$
 - (iii) Let $d = \gcd(n, k)$. Use parts (i) and (ii) to show that

$$\operatorname{prd} a^{\kappa} = n/d.$$

- **2.** Let G be a cyclic group of size at least 3.
 - (i) Show that G has at least 2 distinct generators.
 - (ii) If G is finite, show that G has an even number of distinct generators.
- 3. For each of the following groups, find all their cyclic subgroups:
 - (i) \mathbb{Z}_{14}^{\times} .
 - (ii) \mathbb{Z}_{20}^{\times} .
 - (iii) $\mathbb{Z}_2 \times \mathbb{Z}_6$.
- 4. Let $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group of order 8. Find all the subgroups of Q_8 and draw the corresponding lattice of subgroups.
- 5. Let $H = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}.$
 - (i) Sketch H in the plane.
 - (ii) Consider \mathbb{R}^2 as a group under vector addition. Show that H is a subgroup of \mathbb{R}^2 . Is H commutative?
 - (iii) Describe the cosets of H in geometric terms and make a sketch of a few of the cosets.
- **6.** Let S_4 be the group of permutations of the set $\{1, 2, 3, 4\}$. Consider the subgroup H generated by the cyclic permutation $(1\ 2\ 3\ 4) = \begin{pmatrix} 1\ 2\ 3\ 4\ 1 \end{pmatrix}$.
 - (i) Write down all the right cosets and all the left cosets of H in S_4 . (Make sure to indicate all the elements in each coset.)
 - (ii) What is the index of H in S_4 ?