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Solutions for Assignment 3

1. Let G = ⟨a⟩ be a finite cyclic group of order n.

(i) For an element ak ∈ G with 0 < k < n, show that the order of ak is equal to the order of the
cyclic subgroup ⟨ak⟩.
Set m := ord(ak) = min{r > 0 : akr = e}. By definition, ⟨ak⟩ is the subgroup of G consisting of
all the powers of ak. Since am = e, we have

⟨ak⟩ = {e, ak, a2k, . . . , a(m−1)k}.
We need to show that

∣∣⟨ak⟩∣∣ = m; that is, that there are no repetitions in the displayed list.

Suppose there was such a repetition, i.e., aks = akt, for some 0 ≤ s, t ≤ m − 1 with, say, s < t.
Then a(t−s)k = e, and since 0 < t− s < m, this contradicts the fact that m = ord(a).

(ii) Show that ⟨ak⟩ = {aks : s ∈ Z} = {aks+nt : s, t ∈ Z}.
By Lagrange’s theorem, the order of a divides |G| = n; thus, an = e, and the claim follows at
once.

(iii) Let d = gcd(n, k). Use parts (i) and (ii) to show that ord(ak) = n/d.

Since d is the gcd of n and k, there exist integers s0, t0 such that ks0 + nt0 = d. Therefore,
by part (ii), we have that ad ∈ ⟨ak⟩; hence, ⟨ad⟩ ⊆ ⟨ak⟩. On the other hand, since d | k, we
also have k = dr, for some r > 0. Thus, ak = (ad)r ∈ ⟨ad⟩, and hence ⟨ak⟩ ⊆ ⟨ad⟩. Therefore,
we have that ⟨ak⟩ = ⟨ad⟩, and so, by part (i) with k → d, we have that m must be equal to
ord(ad) =

∣∣⟨ad⟩∣∣.
Now observe that (ad)n/d = an = e, and so m = ord(ad) must divide n/d. On the other hand,
akm = (ak)m = e; thus, since ord(a) = n, we must have n | km. Therefore, since n = gcd(n, k),
properties of the gcd imply that n/d | (k/d)m. But, since gcd(n/d, k/d) = 1, this implies
n/d | m. Putting things together, we conclude that m = n/d.

2. Let G be a cyclic group of size at least 3.

(i) Show that G has at least 2 distinct generators.

Since, by assumption, G is a non-trivial cyclic group, we have that G = ⟨a⟩, for some a ∈ G,
a ̸= e. Since, in fact, |G| ≥ 3, we must have a ̸= a−1. Indeed, otherwise we would have
a2 = 1, and so G = {e, a}, a contradiction. Finally, note that a = (a−1)−1, which implies
⟨a−1⟩ = ⟨a⟩ = G. Thus, we have showed G has two distinct generators, namely, a and a−1.

(ii) If G is finite, show that G has an even number of distinct generators.

Set n = |G|. By the above, if a is a generator of G, so is a−1, and a ̸= a−1. Likewise, if ak ∈ G
is any other generator, distinct from a±1, then ak ̸= a−k. Proceeding in this fashion, we see that
the set of generators of G is a list the form {a±1, a±k, . . . }, with no repetitions in it. Hence, this
set has even size.

Alternatively, we know that the set of generators of G is in bijection with the set A = {k ∈ Z : 0 <
k < n and gcd(k, n) = 1}. This set is the union of two disjoint subsets, A+ = {k ∈ A : k < n/2}
and A− = {ℓ ∈ A : ℓ > n/2}. Since gcd(n, k) = gcd(n, n− k), the correspondence k ↔ ℓ = n− k
is a bijection between A+ and A−. Therefore, |A+| = |A−|, and so |A| is even.
Note: What we have proved here is that the Euler totient function φ(n) takes only even values
for n ≥ 3.
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3. For each of the following groups, find all their cyclic subgroups:

(i) Z×
14 = {1, 3, 5, 9, 11, 13} is cyclic of order 6, generated by 3. Thus, all its subgroups are cyclic;

the complete list consists of 4 subgroups: {1}, ⟨13⟩ = {1, 13}, ⟨9⟩ = {1, 9, 11}, and ⟨3⟩ = Z×
14.

(ii) Z×
20 = {1, 3, 7, 9, 11, 13, 17, 19} has 6 cyclic subgroups: {1}, ⟨9⟩ = {1, 9}, ⟨11⟩ = {1, 11}, ⟨19⟩ =

{1, 19}, ⟨3⟩ = {1, 3, 9, 7}, and ⟨13⟩ = {1, 13, 9, 17}.

4. Let Q8 = {±1,±i,±j,±k} be the quaternion group of order 8. Find all the subgroups of Q8 and
draw the corresponding lattice of subgroups.

The subgroups of Q8 are: {1}, {±1}, {±1,±i}, {±1,±j}, {±1,±k}, Q8.

5. Let H = {(x, y) ∈ R2 : x+ y = 0}.
(i) Sketch H in the plane.

H is a line of slope −1 going through the origin.

(ii) Consider R2 as a group under vector addition. Show that H is a subgroup of R2. Is H commu-
tative?

If v1 = (x1, y1) and v2 = (x2, y2) are both in H, then v1 − v2 = (x1 − x2, y1 − y2) is also in H,
since (x1 − x2) + (y1 − y2) = (x1 + y1) − (x2 + y2) = 0 + 0 = 0. Thus, H is a subgroup of R2.
Since R2 is commutative, H is also commutative.

(iii) Describe the cosets of H in geometric terms and make a sketch of a few of the cosets.

The (right) cosets of H are of the form H + v, where v = (v1, v2) is an arbitrary vector in R2.
That is, they are all the (parallel) lines in R2 of slope −1.

6. Let S4 be the group of permutations of the set {1, 2, 3, 4}. Consider the subgroup H generated by
the cyclic permutation (1 2 3 4) =

(
1 2 3 4
2 3 4 1

)
.

(i) Write down all the right cosets and all the left cosets of H in S4.

Right cosets:

H = {(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}
H · (1, 2) = {(2, 3, 4), (1, 2), (1, 3, 2, 4), (1, 4, 3)}
H · (2, 3) = {(2, 3), (1, 2, 4, 3), (1, 3, 4), (1, 4, 2)}
H · (1, 4) = {(2, 4, 3), (1, 2, 3), (1, 3, 4, 2), (1, 4)}
H · (2, 4) = {(2, 4), (1, 2)(3, 4), (1, 3), (1, 4)(2, 3)}
H · (3, 4) = {(3, 4), (1, 2, 4), (1, 3, 2), (1, 4, 2, 3)}

Left cosets:

H = {(), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}
(1, 2) ·H = {(2, 3, 4), (1, 3, 2, 4), (1, 4, 3), (1, 2)}
(2, 3) ·H = {(2, 3), (1, 3, 4), (1, 2, 4, 3), (1, 4, 2)}
(1, 4) ·H = {(2, 4, 3), (1, 4), (1, 2, 3), (1, 3, 4, 2)}
(2, 4) ·H = {(2, 4), (1, 4)(2, 3), (1, 3), (1, 2)(3, 4)}
(3, 4) ·H = {(3, 4), (2, 3, 1, 4), (4, 3, 1, 2), (1, 3, 2)}

(ii) What is the index of H in S4?

[S4 : H] = #{right cosets} = #{right cosets} = |S4| / |H| = 6.


