MATH 3175

Prof. Alexandru Suciu

Group Theory

Summer 2, 2022

Assignment 2

- **1.** Let R be a ring. An element $x \in R$ is called an *idempotent* if $x^2 = x$. (For instance, both 0 and 1 are idempotents.)
 - (i) Let x be an idempotent, $x \neq 1$. Show that x is a zero-divisor.
 - (ii) The ring R is called a *Boolean ring* if every element in R is an idempotent. Show that in such a ring, the following identities hold:

(1)
$$x = -x$$
 for all $x \in R$,
(2) $xy = yx$ for all $x, y \in R$.

- **2.** For the ring $R = \mathbb{Z}_{12}$:
 - (i) List all the invertible elements, zero-divisors, and idempotents.
 - (ii) Are there any elements which are neither zero-divisors nor invertible?
 - (iii) Are there any zero-divisors which are not idempotent?
- **3.** Let (G, \cdot, e) be a group. An element $a \in G$ is said to have finite order if there is a positive integer n such that $a^n \coloneqq a \cdot a \cdots a$ (multiplication done n times) is equal to the identity e. The smallest such n is called the *order* of a, and is denoted by $\operatorname{ord}(a)$ (or o(a), or |a|). If no such n exists, we say a has infinite order, and write $\operatorname{ord}(a) = \infty$.
 - (i) Show that, for all $a, b \in G$,
 - (1) $\operatorname{ord}(a) = \operatorname{ord}(a^{-1}).$
 - (2) $\operatorname{ord}(ab) = \operatorname{ord}(ba)$.
 - (ii) Assume now that the orders of a and b are finite and coprime, and that ab = ba. Show that $\operatorname{ord}(ab) = \operatorname{ord}(a) \operatorname{ord}(b)$.
- 4. For each of the following groups, list all their elements, together with their orders:
 - (i) \mathbb{Z}_{12} .
 - (ii) \mathbb{Z}_{12}^{\times} .
 - (iii) $\mathbb{Z}_6 \times \mathbb{Z}_2$.
 - (iv) $S_3 \times \mathbb{Z}_2$.

5. Let G be the set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, with $a, b \in \mathbb{R}$ and $a \neq 0$.

- (i) Show that G is a group under matrix multiplication.
- (ii) Is G abelian?
- (iii) Find all the elements of G that commute with $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.