Assignment 2

1. Let R be a ring. An element $x \in R$ is called an idempotent if $x^{2}=x$. (For instance, both 0 and 1 are idempotents.)
(i) Let x be an idempotent, $x \neq 1$. Show that x is a zero-divisor.
(ii) The ring R is called a Boolean ring if every element in R is an idempotent. Show that in such a ring, the following identities hold:

$$
\begin{align*}
x=-x & \text { for all } x \in R, \tag{1}\\
x y=y x & \text { for all } x, y \in R . \tag{2}
\end{align*}
$$

2. For the ring $R=\mathbb{Z}_{12}$:
(i) List all the invertible elements, zero-divisors, and idempotents.
(ii) Are there any elements which are neither zero-divisors nor invertible?
(iii) Are there any zero-divisors which are not idempotent?
3. Let (G, \cdot, e) be a group. An element $a \in G$ is said to have finite order if there is a positive integer n such that $a^{n}:=a \cdot a \cdots a$ (multiplication done n times) is equal to the identity e. The smallest such n is called the order of a, and is denoted by ord (a) (or $o(a)$, or $|a|$). If no such n exists, we say a has infinite order, and write $\operatorname{ord}(a)=\infty$.
(i) Show that, for all $a, b \in G$,
(1) $\operatorname{ord}(a)=\operatorname{ord}\left(a^{-1}\right)$.
(2) $\operatorname{ord}(a b)=\operatorname{ord}(b a)$.
(ii) Assume now that the orders of a and b are finite and coprime, and that $a b=b a$. Show that $\operatorname{ord}(a b)=\operatorname{ord}(a) \operatorname{ord}(b)$.
4. For each of the following groups, list all their elements, together with their orders:
(i) \mathbb{Z}_{12}.
(ii) \mathbb{Z}_{12}^{\times}.
(iii) $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$.
(iv) $S_{3} \times \mathbb{Z}_{2}$.
5. Let G be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$, with $a, b \in \mathbb{R}$ and $a \neq 0$.
(i) Show that G is a group under matrix multiplication.
(ii) Is G abelian?
(iii) Find all the elements of G that commute with $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
