Solutions for Assignment 2

1. Let R be a ring. An element $x \in R$ is called an idempotent if $x^{2}=x$. (For instance, both 0 and 1 are idempotents.)
(i) Let x be an idempotent, $x \neq 1$. Show that x is a zero-divisor.

Since x is idempotent, we have $x(x-1)=x^{2}-x=0$. Moreover, since $x \neq 1$, we have $x-1 \neq 0$. Thus, x is a zero-divisor.
(ii) The ring R is called a Boolean ring if every element in R is an idempotent. Show that in such a ring, the following identities hold:

$$
\begin{array}{rlrl}
x & =-x & \text { for all } x \in R \\
x y & =y x & & \text { for all } x, y \in R . \tag{2}
\end{array}
$$

Since $x+x$ is idempotent, we have $(x+x)^{2}=x+x$, and so $x^{2}+x+x+x^{2}=x+x$, or $x^{2}+x^{2}=0$. But x is also idempotent, and so we have $x+x=0$, that is, $x=-x$.

Since $x+y$ is idempotent, we have $(x+y)^{2}=x+y$, and so $x^{2}+x y+y x+y^{2}=x+y$. But x and y are also idempotent, and so we have $x+x y+y x+y=x+y$, that is, $x y+y x=0$. From the previous computation, we know that $y x=-y x$. Thus, we conclude that $x y=y x$.
2. For the ring $R=\mathbb{Z}_{12}$:
(i) List all the invertible elements, zero-divisors, and idempotents.

- Invertible elements: $1,5,7,11$.
- Zero-divisors: $0,2,3,4,6,8,9,10$.
- Idempotents: 0, 1, 4, 9.
(ii) Are there any elements which are neither zero-divisors nor invertible?

No
(iii) Are there any zero-divisors which are not idempotent?

Yes: $2,3,6,8$, and 10 .
3. Let (G, \cdot, e) be a group. An element $a \in G$ is said to have finite order if there is a positive integer n such that $a^{n}:=a \cdot a \cdots a$ (multiplication done n times) is equal to the identity e. The smallest such n is called the order of a, and is denoted by ord (a) (or $o(a)$, or $|a|$). If no such n exists, we say a has infinite order, and write $\operatorname{ord}(a)=\infty$.
(i) Show that, for all $a, b \in G$,
(1) $\operatorname{ord}(a)=\operatorname{ord}\left(a^{-1}\right)$.

If $a=e$, then $a^{-1}=e$, and there is nothing to prove; so assume $a \neq e$.
If $\operatorname{ord}(a)=n$, for some $n>1$, write $k:=\operatorname{ord}\left(a^{-1}\right)$. Note that $\left(a^{-1}\right)^{n}=e$, and so $k \mid n$. Suppose $k<n$; then $\left(a^{k}\right)^{-1}=\left(a^{-1}\right)^{k}=e$, and so $a^{k}=e$, contradicting ord $(a)=n$. Therefore, $k=n$, and thus ord $\left(a^{-1}\right)=\operatorname{ord}(a)$.

If $\operatorname{ord}(a)=\infty$, then $\operatorname{ord}\left(a^{-1}\right)=\infty$, too, since otherwise $\left(a^{-1}\right)^{n}=e$ for some $n>0$, which would imply $\left(a^{n}\right)^{-1}=e$, and so $a^{n}=e$, contradicting $\operatorname{ord}(a)=\infty$.
(2) $\operatorname{ord}(a b)=\operatorname{ord}(b a)$.

If $a b=e$, then $b=a^{-1}$ and $b a=e$, and there is nothing to prove; so assume $a b \neq e$.
First suppose $\operatorname{ord}(a b)=n$, for some $n>1$, and write $k:=\operatorname{ord}(b a)$. Since $(a b)^{n}=e$, we have that $(a b)^{n-1}=(a b)^{-1}=b^{-1} a^{-1}$. Therefore, $(b a)^{n}=b(a b)^{n-1} a=b\left(b^{-1} a^{-1}\right) a=e$. Thus, $k \mid n$. Suppose $k<n$; then $(a b)^{k}=a(b a)^{k-1} b=a(b a)^{-1} b=e$, and so $(a b)^{k}=e$, contradicting $\operatorname{ord}(a b)=n$. Therefore, $k=n$, and thus ord $(b a)=\operatorname{ord}(a b)$.
Now suppose $\operatorname{ord}(a b)=\infty$, and assume $\operatorname{ord}(b a)=n$, for some integer $n>1$. Then $(a b)^{n}=$ $a(b a)^{n-1} b=a(b a)^{-1} b=e$, contradicting $\operatorname{ord}(a b)=\infty$. Therefore, $\operatorname{ord}(b a)=\operatorname{ord}(a b)=\infty$.
(ii) Assume now that the orders of a and b are finite and coprime, and that $a b=b a$. Show that $\operatorname{ord}(a b)=\operatorname{ord}(a) \operatorname{ord}(b)$.
Write $\operatorname{ord}(a)=m$ and $\operatorname{ord}(b)=n$, where, by assumption, $\operatorname{gcd}(m, n)=1$. Since $a b=b a$, we have: $(a b)^{m n}=a^{m n} b^{m n}=\left(a^{m}\right)^{n}\left(b^{n}\right)^{m}=e^{n} e^{m}=e$. Setting $k:=\operatorname{ord}(a b)$, this implies $k \mid m n$. Suppose $k<m n$; then $e=(a b)^{k}=a^{k} b^{k}$, and so $b^{k}=\left(a^{k}\right)^{-1}$, which implies by part (i)(1) that $\operatorname{ord}\left(a^{k}\right)=\operatorname{ord}\left(b^{k}\right)$. But $\operatorname{ord}\left(a^{k}\right) \mid \operatorname{ord}(a)=m$ and $\operatorname{ord}\left(b^{k}\right) \mid \operatorname{ord}(b)=n$, contradicting the assumption that $\operatorname{gcd}(m, n)=1$. Therefore, $k=m n$, that is, ord $(a b)=\operatorname{ord}(a) \operatorname{ord}(b)$.
4. For each of the following groups, list all their elements, together with their orders:
(i) $\mathbb{Z}_{12}=\{0,1,2,3,4,5,6,7,8,9,10,11\}$, with orders $\{1,12,6,3,4,12,2,3,12,4,6,12\}$.
(ii) $\mathbb{Z}_{12}^{\times}=\{1,5,7,11\}$, with orders $\{1,2,2,2\}$.
(iii) $\mathbb{Z}_{6} \times \mathbb{Z}_{2}=\{(0,0),(1,0),(2,0),(3,0),(4,0),(5,0),(0,1),(1,1),(2,1),(3,1),(4,1),(5,1)\}$, with orders $\{1,6,3,2,3,6,2,6,6,2,6,6\}$.
(iv) $S_{3} \times \mathbb{Z}_{2}=\{((), 0),((12), 0),((13), 0),((23), 0),((123), 0),((132), 0),((), 1),((12), 1),((13), 1)$, $((23), 1),((123), 1),((132), 1)\}$, with orders $\{1,2,2,2,3,3,2,2,2,2,6,6\}$.
5. Let G be the set of all 2×2 matrices of the form $\left(\begin{array}{cc}a & b \\ 0 & 1\end{array}\right)$, with $a, b \in \mathbb{R}$ and $a \neq 0$.
(i) Show that G is a group under matrix multiplication.

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
c & d \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
c^{-1} & -d c^{-1} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a c^{-1} & -a d c^{-1}+b \\
0 & 1
\end{array}\right)
$$

Thus, G is a subgroup of $\mathrm{GL}(2, \mathbb{R})$; in particular, a group.
(ii) Is G abelian?

No: $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 2 \\ 0 & 1\end{array}\right)$ is not equal to $\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right)$.
(iii) Find all the elements of G that commute with $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
$\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ if and only if $\left(\begin{array}{cc}2 a & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}2 a & 2 b \\ 0 & 1\end{array}\right)$,
which only happens if $b=2 b$, that is, $b=0$.

