MATH 3175

Prof. Alexandru Suciu

Group Theory

Summer 2, 2022

Assignment 1

1. Consider the binary operations * and \star on the set $S = \{e, a, b, c, d\}$ given by the following multiplication tables:

*	e	a	b	c	d	*	e	a	b	С	d
e	e	a	b	c	d	e	e	a	b	c	d
a	a	b	d	e	c	a	a	c	e	d	b
b	b	d	c	a	e	b	b	d	c	a	e
c	c	e	a	d	b	c	c	e	d	b	a
d	d	c	e	b	a	d	d	b	a	e	c

Which (if either) of these binary operations gives S the structure of a group? Prove your answer.

- **2.** Let G a group.
 - (i) Suppose $(ab)^{-1} = a^{-1}b^{-1}$, for all a and b in G. Prove that G is abelian.
 - (ii) Give an example of a group G and two elements $a, b \in G$ for which $(ab)^{-1} \neq a^{-1}b^{-1}$.
- **3.** Let G and H be two groups, and let $G \times H$ be their product.
 - (i) If both G and H are commutative, show that $G \times H$ is also commutative.
 - (ii) If either G or H is non-commutative, show that $G \times H$ is non-commutative.
- 4. Let G be a group, with group operation \cdot and identity e = 1. Let u be an element not in G and consider the magma

$$M = G \cup (Gu),$$

where $Gu = \{gu \mid g \in G\}$ and the product in M is given by the usual product of elements in G, together with $1 \cdot u = u$ and

$$(gu)h = (gh^{-1})u$$
$$g(hu) = (hg)u$$
$$(gu)(hu) = h^{-1}g.$$

- (i) Show that $u^2 = 1$ and $ug = g^{-1}u$.
- (ii) Show that M has an identity.
- (iii) Show that the multiplication on M is associative if and only if G is abelian.

5. Consider the set of matrices $S = \{I, A, B, C\}$, where

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

- (i) Write out the multiplication table for S.
- (ii) Show that the set S (with this multiplication) is a magma. Is this magma abelian?
- (iii) Is the magma S a group?
- **6.** Give an example of three permutations $\alpha, \beta, \gamma \in S_4$ (none of which is equal to the identity permutation) such that $\alpha\beta = \beta\alpha$ and $\beta\gamma = \gamma\beta$ but $\alpha\gamma \neq \gamma\alpha$.