Assignment 1

1. Consider the binary operations $*$ and \star on the set $S=\{e, a, b, c, d\}$ given by the following multiplication tables:

$*$	e	a	b	c	d
e	e	a	b	c	d
a	a	b	d	e	c
b	b	d	c	a	e
c	c	e	a	d	b
d	d	c	e	b	a

\star	e	a	b	c	d
e	e	a	b	c	d
a	a	c	e	d	b
b	b	d	c	a	e
c	c	e	d	b	a
d	d	b	a	e	c

Which (if either) of these binary operations gives S the structure of a group? Prove your answer.
2. Let G a group.
(i) Suppose $(a b)^{-1}=a^{-1} b^{-1}$, for all a and b in G. Prove that G is abelian.
(ii) Give an example of a group G and two elements $a, b \in G$ for which $(a b)^{-1} \neq a^{-1} b^{-1}$.
3. Let G and H be two groups, and let $G \times H$ be their product.
(i) If both G and H are commutative, show that $G \times H$ is also commutative.
(ii) If either G or H is non-commutative, show that $G \times H$ is non-commutative.
4. Let G be a group, with group operation - and identity $e=1$. Let u be an element not in G and consider the magma

$$
M=G \cup(G u),
$$

where $G u=\{g u \mid g \in G\}$ and the product in M is given by the usual product of elements in G, together with $1 \cdot u=u$ and

$$
\begin{aligned}
(g u) h & =\left(g h^{-1}\right) u \\
g(h u) & =(h g) u \\
(g u)(h u) & =h^{-1} g .
\end{aligned}
$$

(i) Show that $u^{2}=1$ and $u g=g^{-1} u$.
(ii) Show that M has an identity.
(iii) Show that the multiplication on M is associative if and only if G is abelian.
5. Consider the set of matrices $S=\{I, A, B, C\}$, where

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad C=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

(i) Write out the multiplication table for S.
(ii) Show that the set S (with this multiplication) is a magma. Is this magma abelian?
(iii) Is the magma S a group?
6. Give an example of three permutations $\alpha, \beta, \gamma \in S_{4}$ (none of which is equal to the identity permutation) such that $\alpha \beta=\beta \alpha$ and $\beta \gamma=\gamma \beta$ but $\alpha \gamma \neq \gamma \alpha$.

