## Prof. Alexandru Suciu

## Solutions for Assignement 1

1. Consider the binary operations $*$ and $\star$ on the set $S=\{e, a, b, c, d\}$ given by the following multiplication tables:

| $*$ | $e$ | $a$ | $b$ | $c$ | $d$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $b$ | $c$ | $d$ |
| $a$ | $a$ | $b$ | $d$ | $e$ | $c$ |
| $b$ | $b$ | $d$ | $c$ | $a$ | $e$ |
| $c$ | $c$ | $e$ | $a$ | $d$ | $b$ |
| $d$ | $d$ | $c$ | $e$ | $b$ | $a$ |


| $\star$ | $e$ | $a$ | $b$ | $c$ | $d$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $e$ | $e$ | $a$ | $b$ | $c$ | $d$ |
| $a$ | $a$ | $c$ | $e$ | $d$ | $b$ |
| $b$ | $b$ | $d$ | $c$ | $a$ | $e$ |
| $c$ | $c$ | $e$ | $d$ | $b$ | $a$ |
| $d$ | $d$ | $b$ | $a$ | $e$ | $c$ |

Which (if either) of these binary operations gives $S$ the structure of a group? Prove your answer.
The first table corresponds to the Cayley table of the (additive) cyclic group $\mathbb{Z}_{5}$, under the bijection $\{e, a, b, c, d\} \leftrightarrow\{0,1,2,4,3\}$. The second table is a Latin square that does not correspond to any group, since the $\star$ operation is not associative; for instance, $(a \star b) \star b=e \star b=b$, whereas $a \star(b \star b)=a \star c=d$.
2. Let $G$ a group.
(i) Suppose $(a b)^{-1}=a^{-1} b^{-1}$, for all $a$ and $b$ in $G$. Prove that $G$ is abelian.

We have:

$$
(a b)^{-1}=a^{-1} b^{-1} \Longleftrightarrow\left((a b)^{-1}\right)^{-1}=\left(a^{-1} b^{-1}\right)^{-1} \Longleftrightarrow a b=\left(b^{-1}\right)^{-1}\left(a^{-1}\right)^{-1} \Longleftrightarrow a b=b a
$$

Thus, the hypothesis is equivalent to $(a b=b a, \forall a, b \in G)$, which means that $G$ must be abelian.
(ii) Give an example of a group $G$ and two elements $a, b \in G$ for which $(a b)^{-1} \neq a^{-1} b^{-1}$.

Let $G=Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$. Then $i j=k$ but $j i=-k$, and so $i j \neq j i$, or, $(i j)^{-1} \neq$ $j^{-1} i^{-1}$.
3. Let $G$ and $H$ be two groups, and let $G \times H$ be their product.
(i) If both $G$ and $H$ are commutative, show that $G \times H$ is also commutative.

Let $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ two arbitrary elements in $G \times H$. Then:

$$
\begin{aligned}
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) & =\left(g_{1} g_{2}, h_{1} h_{2}\right) & & \text { by the definition of the group operation in } G \times H \\
& =\left(g_{2} g_{1}, h_{2} h_{1}\right) & & \text { since both } G \text { and } H \text { are commutative } \\
& =\left(g_{2}, h_{2}\right)\left(g_{1}, h_{1}\right) & & \text { by the definition of the group operation in } G \times H
\end{aligned}
$$

(ii) If either $G$ or $H$ is non-commutative, show that $G \times H$ is non-commutative.

Suppose $G$ is non-commutative. Then there are $g_{1}, g_{2} \in G$ such that $g_{1} g_{2} \neq g_{2} g_{1}$. Using the same rationale as above, we infer that $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right) \neq\left(g_{2}, h_{2}\right)\left(g_{1}, h_{1}\right)$, for any $h_{1}, h_{2} \in H$ (for instance, we could take $h_{1}=h_{2}=e_{H}$ to be concrete), and this shows that $G \times H$ is non-commutative.
The case when $H$ is non-commutative is treated completely similarly.
4. Let $G$ be a group, with group operation $\cdot$ and identity $e=1$. Let $u$ be an element not in $G$ and consider the magma

$$
M=G \cup(G u),
$$

where $G u=\{g u \mid g \in G\}$ and the product in $M$ is given by the usual product of elements in $G$, together with $1 \cdot u=u$ and

$$
\begin{align*}
(g u) h & =\left(g h^{-1}\right) u  \tag{1}\\
g(h u) & =(h g) u  \tag{2}\\
(g u)(h u) & =h^{-1} g . \tag{3}
\end{align*}
$$

(i) Show that $u^{2}=1$ and $u g=g^{-1} u$.

We have: $u^{2}=(1 \cdot u)(1 \cdot u)$, which by rule $(3)$ is equal to $1^{-1} 1=1$. Likewise, $u g=(1 \cdot u) g$, which, by rule (1) [with $g \rightarrow 1, h \rightarrow g$ ] is equal to $\left(1 \cdot g^{-1}\right) u=g^{-1} u$.
(ii) Show that $M$ has an identity.

Since $e=1$ is the identity of $G$, we gave $1 \cdot g=g \cdot 1=g$ for all $g \in G$. Moreover, $1 \cdot(g u)=(1 \cdot g) u=g u$ by rule $(2)$ [with $g \rightarrow 1, h \rightarrow g]$ and $(g u) \cdot 1=\left(g \cdot 1^{-1}\right) u=g u$ by rule (1) [with $h \rightarrow 1$ ]. Thus, 1 is an identity for $M$.
(iii) Show that the multiplication on $M$ is associative if and only if $G$ is abelian.

First assume $G$ is abelian, that is, $g h=h g$ for all $h, g \in G$. Then:

$$
\begin{array}{ll}
g(h u)=(h g) u=(g h) u & \text { by }(2) \text { and commutativity of } G \\
(g u) h=\left(g h^{-1}\right) u=g\left(h^{-1} u\right)=g(u h) & \text { by }(1), \text { previous line }\left[\text { with } h \rightarrow h^{-1}\right], \text { and part }(\text { i) }[\text { with } g \rightarrow h]
\end{array}
$$

Conversely, assume $M$ is associative, and let $g, h \in G$. Using part (i), the associativity hypothesis, and formula (2), we find:

$$
g h=g h u^{2}=g(h u) u=(h g) u^{2}=h g .
$$

5. Consider the set of matrices $S=\{I, A, B, C\}$, where

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad C=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

(i) Write out the multiplication table for $S$.

| $I$ | $A$ | $B$ | $C$ |
| :---: | :---: | :---: | :---: |
| $A$ | $I$ | $C$ | $B$ |
| $B$ | $C$ | $I$ | $A$ |
| $C$ | $B$ | $A$ | $I$ |

(ii) Show that the set $S$ (with this multiplication) is a magma. Is this magma abelian?
$S$ is closed under this operation, and thus it is a magma. Clearly, $I$ is an identity for $S$, and $A B=B A, A C=C A$, and $B C=C B$; thus, $S$ is abelian.
(iii) Is the magma $S$ a group? Every element in $S$ has an inverse (namely, itself), and matrix multiplication is associative. Thus, $S$ is a group.
6. Give an example of three permutations $\alpha, \beta, \gamma \in S_{4}$ (none of which is equal to the identity permutation) such that $\alpha \beta=\beta \alpha$ and $\beta \gamma=\gamma \beta$ but $\alpha \gamma \neq \gamma \alpha$.
Take for instance

$$
\begin{aligned}
& \alpha=(12)(34)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) \\
& \beta=(14)(23)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right) \\
& \gamma=(14)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 \\
4 & 2 & 3 & 1
\end{array}\right) .
\end{aligned}
$$

It is readily verified that $\alpha \beta=\beta \alpha=(13)(24)$ and $\beta \gamma=\gamma \beta=(24)$ yet $\alpha \gamma=(1243)$, which differs from $\gamma \alpha=(1342)$.

