Final Exam

1. Consider the following functions.
(a) $f: \mathbb{R}^{\times} \rightarrow \mathrm{GL}_{2}(\mathbb{R}), f(a)=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$.
(b) $f: \mathbb{R}^{\times} \rightarrow \mathrm{GL}_{2}(\mathbb{R}), f(a)=\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right)$.
(c) $f: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}, f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a b$.
(d) $f: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}, f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a+d$.
(e) $f: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}, f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a d-b c$.

For each of these functions, answer the following questions, with a (brief) justification.
(i) Is f a homomorphism?
(ii) Is f injective?
(iii) Is f surjective?
2. Let S_{4} be the group of all permutations of the set $\{1,2,3,4\}$. Consider the subgroups S_{3} of all permutations fixing 4 .
(i) Write down all the left and right cosets of S_{3} in S_{4}. Be sure to indicate the elements of each coset.
(ii) What is the index of S_{3} in S_{4} ?
(iii) Is S_{3} a normal subgroup of S_{4} ? Why or why not?
3. Let $D_{n}(n \geq 3)$ be the dihedral group of order $2 n$.
(i) Show that $D_{10} \cong D_{5} \times \mathbb{Z}_{2}$ by constructing an explicit isomorphism between the two groups.
(ii) What are the centers of D_{5} and D_{10} ?
(iii) Identify the quotient groups $D_{5} / Z\left(D_{5}\right)$ and $D_{10} / Z\left(D_{10}\right)$ in terms of known groups.
4. Let GL $(2,11)$ be the group of all invertible 2×2 matrices with entries in \mathbb{Z}_{11}, with group operation given my matrix multiplication. Consider the following two matrices in this group (where an entry listed as k is shorthand for $[k]_{11}$):

$$
A=\left(\begin{array}{cc}
3 & 10 \\
1 & 0
\end{array}\right), \quad B=\left(\begin{array}{cc}
3 & 10 \\
8 & 8
\end{array}\right)
$$

(i) Show that A has order $5, B$ has order 2 , and that $B A B^{-1}=A^{-1}$.
(ii) Consider the subset of $\operatorname{GL}(2,11)$ given by

$$
G=\left\{A^{m} B^{n}: m, n \in \mathbb{Z}\right\}
$$

Show that G is a subgroup of $\operatorname{GL}(2,11)$.
(iii) List all the elements of G, together with their orders.
(iv) Identify G in terms of known groups.
5. Let $G=\mathbb{Z}_{8} \times \mathbb{Z}_{6}$, and consider the subgroups $H=\{(0,0),(4,0),(0,3),(4,3)\}$ and $K=\langle(2,2)\rangle$. Identify the following groups (as direct products of cyclic groups of prime power order):
(i) H and G / H.
(ii) K and G / K.
6. Recall that, for every group G, the map $\varphi: G \rightarrow \operatorname{Sym}(G)$ which sends $g \in G$ to the bijection $\ell_{g}: G \rightarrow G, \ell_{g}(x)=g x$ is an injective homomorphism. Consider now the quaternion group $G=Q_{8}=\{1,-1, i,-i, j,-j, k,-k\}$. Identifying $\operatorname{Sym}\left(Q_{8}\right)$ with S_{8} leads to an embedding, $\varphi: Q_{8} \hookrightarrow S_{8}$.
(i) List the 8 permutations $\varphi(g)$, where g runs through the elements of Q_{8}.
(ii) Are -1 and i conjugate in Q_{8} ? If yes, find an element $g \in Q_{8}$ that conjugates one to the other; if not, explain why not.
(iii) Are $\varphi(-1)$ and $\varphi(i)$ conjugate in S_{8} ? If yes, find an element $\tau \in S_{8}$ that conjugates one to the other; if not, explain why not.
(iv) Are i and j conjugate in Q_{8} ? If yes, find an element $g \in Q_{8}$ that conjugates one to the other; if not, explain why not.
(v) Are $\varphi(i)$ and $\varphi(j)$ conjugate in S_{8} ? If yes, find an element $\tau \in S_{8}$ that conjugates one to the other; if not, explain why not.
7. Let G be a group of odd order, and let N be a normal subgroup of order 5 . Show that N is contained in the center of G.
8. Let G be a non-abelian group of order p^{3}, where p is a prime. Show that the center of G has order p.

