1. Consider the following functions.

(a)
$$f: \mathbb{R}^{\times} \to \operatorname{GL}_{2}(\mathbb{R}), f(a) = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$$
.
(b) $f: \mathbb{R}^{\times} \to \operatorname{GL}_{2}(\mathbb{R}), f(a) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$.
(c) $f: \operatorname{GL}_{2}(\mathbb{R}) \to \mathbb{R}, f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = ab$.
(d) $f: \operatorname{GL}_{2}(\mathbb{R}) \to \mathbb{R}, f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a + d$.
(e) $f: \operatorname{GL}_{2}(\mathbb{R}) \to \mathbb{R}^{\times}, f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = ad - bc$.

For each of these functions, answer the following questions, with a (brief) justification.

- (i) Is f a homomorphism?
- (ii) Is f injective?
- (iii) Is f surjective?
- **2.** Let S_4 be the group of all permutations of the set $\{1, 2, 3, 4\}$. Consider the subgroups S_3 of all permutations fixing 4.
 - (i) Write down all the *left* and *right* cosets of S_3 in S_4 . Be sure to indicate the elements of each coset.
 - (ii) What is the index of S_3 in S_4 ?
 - (iii) Is S_3 a normal subgroup of S_4 ? Why or why not?
- **3.** Let D_n $(n \ge 3)$ be the dihedral group of order 2n.
 - (i) Show that $D_{10} \cong D_5 \times \mathbb{Z}_2$ by constructing an explicit isomorphism between the two groups.
 - (ii) What are the centers of D_5 and D_{10} ?
 - (iii) Identify the quotient groups $D_5/Z(D_5)$ and $D_{10}/Z(D_{10})$ in terms of known groups.

4. Let GL(2, 11) be the group of all invertible 2×2 matrices with entries in \mathbb{Z}_{11} , with group operation given my matrix multiplication. Consider the following two matrices in this group (where an entry listed as k is shorthand for $[k]_{11}$):

$$A = \begin{pmatrix} 3 & 10 \\ 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 10 \\ 8 & 8 \end{pmatrix}.$$

- (i) Show that A has order 5, B has order 2, and that $BAB^{-1} = A^{-1}$.
- (ii) Consider the subset of GL(2, 11) given by

$$G = \{A^m B^n : m, n \in \mathbb{Z}\}.$$

Show that G is a subgroup of GL(2, 11).

- (iii) List all the elements of G, together with their orders.
- (iv) Identify G in terms of known groups.
- 5. Let $G = \mathbb{Z}_8 \times \mathbb{Z}_6$, and consider the subgroups $H = \{(0,0), (4,0), (0,3), (4,3)\}$ and $K = \langle (2,2) \rangle$. Identify the following groups (as direct products of cyclic groups of prime power order):
 - (i) H and G/H.
 - (ii) K and G/K.
- 6. Recall that, for every group G, the map $\varphi \colon G \to \operatorname{Sym}(G)$ which sends $g \in G$ to the bijection $\ell_g \colon G \to G$, $\ell_g(x) = gx$ is an injective homomorphism. Consider now the quaternion group $G = Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$. Identifying $\operatorname{Sym}(Q_8)$ with S_8 leads to an embedding, $\varphi \colon Q_8 \hookrightarrow S_8$.
 - (i) List the 8 permutations $\varphi(g)$, where g runs through the elements of Q_8 .
 - (ii) Are -1 and *i* conjugate in Q_8 ? If yes, find an element $g \in Q_8$ that conjugates one to the other; if not, explain why not.
 - (iii) Are $\varphi(-1)$ and $\varphi(i)$ conjugate in S_8 ? If yes, find an element $\tau \in S_8$ that conjugates one to the other; if not, explain why not.
 - (iv) Are *i* and *j* conjugate in Q_8 ? If yes, find an element $g \in Q_8$ that conjugates one to the other; if not, explain why not.
 - (v) Are $\varphi(i)$ and $\varphi(j)$ conjugate in S_8 ? If yes, find an element $\tau \in S_8$ that conjugates one to the other; if not, explain why not.

- 7. Let G be a group of odd order, and let N be a normal subgroup of order 5. Show that N is contained in the center of G.
- 8. Let G be a non-abelian group of order p^3 , where p is a prime. Show that the center of G has order p.