Name: 5}&1@5

Prof. Alexandru Suciu
MATH 3150 Real Analysis Spring 2011

Midterm Exam

Instructions: Write your name in the space provided. Calculators are permitted, but no notes
are allowed. Each problem is worth 10 points .

1. Let oy =0, @y =1, a3 =+/3, ..., 6z =1 PG,
(a) Show that the sequence {a,} is strictly increasing.
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(b) Show that the sequence {a,} is bounded above.
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(c) Show that the sequence {a,} is converging. Give a reason for your answer.
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2. Let {z,} be a sequence in a complete metric (X, d).

(a) Suppose d(zn41,%n) < 1/27, for all n > 1. Show that {z,} converges.
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(b) Suppose d(zn41,2n) < 1/n, for all n > 1. Show by example that {z,} may not

converge.
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3. Let A and B be two non-empty subsets of R, and write A+B = {z+y |z € A and y € 5

(a) Show that
sup(A + B) = sup() + sup(B).
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(b) Now suppose A = {z € R| z? < 2} and B = {y € R | y < 3}. Compute:
sup(A), sup(B), sup(A+ B).
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4. Let A={(z,y) eR? |22 +y? <1, 2>0, y> 0}
(a) Draw a picture of the set A.
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(b) What is the interior of A? Is A an open subset of R2?
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(c) What is the closure of A? Is A a closed subset of R2?
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(d) What is the boundary of A?
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5. Let (X, d) be a metric space, A a subset of X, and z a point in X. We say that:

e The point z is an accumulation point for A if every open set U containing z
contains some point of A other than z.

e The point x is a limit point for A if every open set U containing z contains some
point of A.

(a) Suppose z is a limit point for A, and = ¢ A; then show that z is an accumulation
point for A.
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(b) Let A= {1/n|n € N}, viewed as a subset of R.
e What are the limit points of A?

e What are the accumulation points of A?

e Does the set of limit points coincide with the set of accumulation points?
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6. Decide whether each of the following series converges or not. In each case, indicate
which test is used, and why that test yields the conclusion you are drawing.
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