
MATH 3150 Problem Set 3 Solutions Fall 2022

1. (10 pts) Let (sn) be a sequence such that

|sn+1 − sn| <
1
n3 for all n ∈ N

Prove that (sn) is a Cauchy sequence and hence a convergent sequence.
Solution: Let n ≥ m. Then, by the triangle inequality and our assumption,

|sn − sm| ≤ |sn − sn−1| + · · · + |sm+1 − sm|

<
1

(n − 1)3 + · · · +
1

m3

=

n−1∑
k=m

1
k3 .

Now consider the series
∑∞

k=1 1/k3. By the integral test, this is a convergent series. Thus, by
the Cauchy criterion for convergence, the following holds: for all ϵ > 0, there is an N ∈ N such
that, for all n ≥ m ≥ N,

n−1∑
k=m

1
k3 < ϵ

Returning now to the original sequence, the above estimates imply the following: for all ϵ > 0,
there is an N ∈ N such that |sn − sm| < ϵ, for all n ≥ m ≥ N. This shows that (sn) is a Cauchy
sequence (of real numbers), and thus, it converges.

2. Consider the sequence (xn) with terms 1
2 ,

1
3 ,

2
3 ,

1
4 ,

2
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 ,

1
7 , . . . .

(a) (5 pts) Show that (xn) is bounded.
The terms of the sequence are fractions of the form p/q with 1 ≤ p < q. Hence, 0 < xn < 1,
for all n ≥ 1, showing that the sequence is bounded below by 0 and above by 1.

(b) (10 pts) Show directly from the definition that (xn) is not a Cauchy sequence.
We need to show the following: There exists an ϵ > 0 such that for all N ∈ N, there are
some n ≥ m ≥ N so that |xn − xm| ≥ ϵ.
Let us take ϵ = 1/2. Then, for all N ∈ N, there will be an m ≥ N such that xm =

k
k+1 for

some k ≥ 3. Then xm+1 =
1

k+2 , and so

|xm+1 − xm| =

∣∣∣∣∣ 1
k + 2

−
k

k + 1

∣∣∣∣∣ =
∣∣∣∣∣∣k + 1 − k2 − 2k

(k + 1)(k + 2)

∣∣∣∣∣∣ = k2 + k − 1
k2 + 3k + 2

≥
1
2
,

where the last inequality holds, since 2k2 + 2k − 2 ≥ k2 + 3k + 2, or k2 − k − 4 ≥ 0, which
is true for all k ≥ 3.

(c) (5 pts) Find two convergent subsequences of (xn) that converge to two different limits.
The subsequence x1 = 1/2, x2 = 1/3, x4 = 1/4, x7 = 1/5, x11 = 1/6, x16 = 1/7, . . . has
terms xk(k−1)/2+1 = 1/(k + 1), and thus converges to 0.
The subsequence x1 = 1/2, x3 = 2/3, x6 = 3/4, x10 = 4/5, x15 = 5/6, . . . has terms
xk(k+1)/2 = k/(k + 1), and thus converges to 1.
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(d) (5 pts) What conclusion regarding the convergence of the sequence (xn) can you draw from
part (c), and how does that conclusion compare to the answer in part (b)?
Solution: The given sequence has two subsequences that converge to two distinct limits
(0 and 1). Therefore, the sequence (xn) is not convergent, since if we had limn→∞ xn = x,
then any subsequence would also converge to x, forcing 0 = x = 1, a contradiction. This
conclusion agrees with the answer in part (b): both say that (xn) does not converge.

3. Let (xn) be a sequence of real numbers. In each of the following situations, decide whether the
sequence converges: if yes, give a proof why; otherwise, give an example where it does not.
(a) (10 pts) |xn − xk| ≤

1
n +

1
k for all n, k ≥ 1.

Solution: Let ϵ > 0, and take N > 2/ϵ. Then, for all n ≥ m ≥ N, we have

|xn − xm| ≤
1
n
+

1
m
≤

1
N
+

1
N
<
ϵ

2
+
ϵ

2
= ϵ.

This shows that (xn) is a Cauchy sequence, and thus converges.

(b) (10 pts) For all ϵ > 0, there is an n > 1/ϵ such that |xn| < ϵ.
Solution: The sequence does not necessarily converge. For instance, take xn = 1/n if n is
even and xn = 1 if n is odd. Then the hypothesis of the problem is satisfied: for all ϵ > 0,
take n > 1/ϵ and n even; then |xn| < ϵ. This shows that limk→∞ x2k = 0. On the other
hand, limk→∞ x2k−1 = 1. Therefore, the sequence (xn) has two subsequences converging to
distinct limits, and thus (xn) does not converge.

4. Let (an) be a sequence and let c, d be real numbers with c < d. Assume that the terms in the
sequence (an) are eventually in the closed interval [c, d]. Prove that
(a) (10 pts) (an) is bounded

Solution: Since the terms in the sequence (an) are eventually in the closed interval [c, d],
it follows that there an N ∈ N with

(1) c ≤ an ≤ d for all n ≥ N

Recall that a nonempty finite set contains both a maximum and a minimum element so we
have that

max{a1, a2, . . . , aN−1, d}

is an uppper bound for (an), and

min{a1, a2, . . . , aN−1, c}

is a lower bound for (an) and the argument is complete.

(b) (10 pts) lim inf an and lim sup an are elements in [c, d].
Solution: The first step is to show that lim sup an ≤ d. From equation (1), it follows that
for n ≥ N, we have that d is an upper bound for {ak : k ≥ n} and hence

(2) vn = sup{ak : k ≥ n} ≤ d for all n ≥ N

Recall that since (an) is bounded the decreasing sequence vn converges to a finite limit and
the limit is lim sup an. Thus from equation (2), we have that lim sup an ≤ d. A similar
argument shows that c ≤ lim inf an and the argument is complete.
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5. (10 pts) Let (an) be a bounded sequence, and let (ank) be a convergent subsequence (an). Prove
that

lim inf an ≤ lim ank ≤ lim sup an

Solution: The first step is to see that since the natural numbers nk that give a subsequence of
an have the property that

n1 < n2 < n3 < · · · < nk < nk+1 < · · ·

it follows that

(3) nk ≥ k for all k ∈ N.

Equation (3) can be proved by induction as follows.
Since n1 ∈ N, we have that n1 ≥ 1.
For the inductive step, assume nk ≥ k. Then since nk+1 > nk and nk, nk+1 ∈ N we have that

nk+1 ≥ nk + 1. This together with the assumption that nk ≥ k then shows that nk+1 ≥ k + 1, and
the proof of equation (3) is complete.

From equation (3) it follows that

{ank : k ≥ n} ⊂ {ak : k ≥ n}

and hence
sup{ank : k ≥ n} ≤ sup{ak : k ≥ n}

Since (an) is bounded, we have that (ank) is bounded so the sequences of sups in the equation
above both converge and we have

lim
k→∞

sup{ank : k ≥ n} ≤ lim
k→∞

sup{ak : k ≥ n}

The limits in the inequality above are the respective lim sups so we have

lim sup ank ≤ lim sup an

Since (ank) converges lim sup(ank) = lim ank so we have lim ank ≤ lim sup an and the argument
is complete.

6. For each of the following series, determine whether the series converges or diverges. Justify
your answers.

(a) (5 pts)
∑ sin(n)

n2

Solution: Since ∣∣∣∣∣sin(n)
n2

∣∣∣∣∣ ≤ 1
n2

and
∑

(1/n2) converges by the integral test, it follows from the comparison test that
∑

sin(n)/n2

converges.

(b) (5 pts)
∞∑

n=2

1
n ln(n)

Solution: The derivative of ln(ln(x) equals 1/(x ln(x)) and limx→∞ x ln(x) is infinite so∫ ∞

2

1
x ln(x)

dx diverges

and it then follows that
∑

1/(n ln(n)) diverges by the integral test.
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(c) (5 pts)
∑ 5n2 + 6n − 2

3n + 1

Solution: Set an =
5n2 + 6n − 2

3n + 1
, then

lim
∣∣∣∣∣an+1

an

∣∣∣∣∣ = lim

∣∣∣∣∣∣5(n + 1)2 + 6(n + 1) − 2
5n2 + 6n − 2

·
3n + 1

3n+1 + 1

∣∣∣∣∣∣
= lim

∣∣∣∣∣∣5(1 + 1/n)2 + 6(1/n + 1/n2) − 2/n2

5 + 6/n − 2/n2 ·
1 + 1/3n

3 + 1/3n

∣∣∣∣∣∣
=

∣∣∣∣∣∣5(1 + 0)2 + 6(0 + 0) − 0
5 + 0 − 0

·
1 + 0
3 + 0

∣∣∣∣∣∣
=

1
3

where the second line follows from the first line by dividing both the numerator and
denominator in the first line by n2 · 3n. Since lim |an+1/an| = 1/3 < 1 it follows that∑ 5n2 + 6n − 2

3n + 1
converges by the ratio test.


