HOMEWORK 3

- 1. Show that all the Whitehead products in the homotopy groups of an *H*-space vanish.
- **2.** Let $\iota_n \in \pi_n(S^n)$ be the homotopy class of the identity map.
 - (a) Show that S^n is an *H*-space if and only if $[\iota_n, \iota_n] = 0$.
 - (b) Show that $[\iota_2, \iota_2] = 2\eta$, where η is the generator of $\pi_3(S^2)$ represented by the Hopf map.
- **3.** Let $\alpha \in \pi_1(S^1 \vee S^2)$ and $\beta \in \pi_2(S^1 \vee S^2)$ be represented by the inclusion maps of the factors. Put

$$X = (S^1 \lor S^2) \cup_f D^3,$$

where $f: S^2 \to S^1 \vee S^2$ is a map representing $2\beta - \alpha \cdot \beta \in \pi_2(S^1 \vee S^2)$. Show that the inclusion map $i: S^1 \to X$ induces isomorphisms $i_{\sharp}: \pi_1(S^1) \xrightarrow{\simeq} \pi_1(X)$ and $i_*: H_n(S^1) \xrightarrow{\simeq} H_n(X)$ for all $n \ge 0$, though i is not a homotopy equivalence.

- 4. Let $f: X \to Y$ be a map between CW-complexes, such that the mapping cone C_f is contractible.
 - (a) Suppose both X and Y are simply-connected. Show that f is a homotopy equivalence.
 - (b) Give an example showing that the simply-connectivity assumption in part (a) cannot be dropped, in general.
- 5. Let $f: X \to Y$ be a map between connected CW-complexes. Show that f is a homotopy equivalence, provided either of the following two conditions holds.
 - (a) The induced homomorphism $f_{\sharp} \colon \pi_1(X) \to \pi_1(Y)$ is an isomorphism, and f admits a lift $\tilde{f} \colon \widetilde{X} \to \widetilde{Y}$ to universal covers, such that the induced homomorphism, $\tilde{f}_* \colon H_n(\widetilde{X}) \to H_n(\widetilde{Y})$, is an isomorphism, for all $n \ge 0$.
 - (b) Both X and Y have dimension at most n, and the induced homomorphism, $f_{\sharp} \colon \pi_i(X) \to \pi_i(Y)$, is an isomorphism, for all $i \leq n$.