
Cohomology jump loci of local systems

Botong Wang

Joint work with Nero Budur

University of Notre Dame

June 28 2013



Introduction

Given a topological space X , we can associate some
homotopy invariants to it: the representation va-
riety R(X , n) and cohomology jump loci V i

k(X , n)
(n, i , k ∈ N). In this talk, we will discuss the de-
formation theoretic aspects of these invariants.



Definitions

Definition

Let X be a connected topological space of the homotopy type of a
finite CW-complex. Fix a base point x ∈ X . The rank n
representation variety of X is defined to be

R(X , n) = Hom(π1(X , x),Gl(n,C)).

Definition

Under the same assumption, the rank n cohomology jump loci of
X is defined to be

V ik(X , n) = {ρ ∈ R(X , n) | dimH i (X , Lρ) ≥ k}

where Lρ is the local system associated to ρ : π1(X , x)→ Gl(n,C).
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The theorem of Dimca-Papadima

The following is a partial generalization of earlier results of
Green-Lazarsfeld, Arapura and Goldman-Millson.

Theorem (Dimca-Papadima)

The reduced analytic germ of V ik(X , n) at the trivial representation
1 only depends on the rational homotopy type of X .

When X has some nice geometry, e.g., when X is a compact
Kähler manifold, or quasi-Kähler manifold, the rational homotopy
theory of X is particularly nice. In this case, one can obtain a nice
description of the reduced analytic germs of V ik(X , n) at 1.

In this talk, we want to generalize the above theorem in two
directions. First, we want to have a result about the analytic germ
at a general point in V ik(X , n). Second, we want to describe the
whole analytic germ, not only the reduced part.
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The precise definitions

Remark

R(X , n) and V ik(X , n) are defined as sets in priori. However, they
have natural (possibly non-reduced) scheme structures, which we
will explain as follows.

Given a finite set of generators of π1(X , x) and a finite set of
relations, one can explicitly write down the equations defining
R(X , n). Thus, R(X , n) has a scheme structure.

Over X × R(X , n), there is a universal family of local systems,
which we denote by L. Denote the projections from X × R(X , n)
to the first and second factors by p1 and p2 respectively. One can
represent Rp2∗(L) by a bounded complex of free sheaves (F •, d•),
so that H i (X , Lρ) ∼= H i ((F •, d•)|{ρ}).
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The precise definitions

Set-theoretically, V ik(X , n) the locus where

rank(F i )− rank(d i−1)− rank(d i ) ≥ k .

Then precisely, V ik(X , n) as a subscheme of R(X , n) is defined by
the determinantal ideal sheaf Iri−k+1(d i−1 ⊕ d i ), where ri is the
rank of F i .



An overview

To obtain a statement about a general point of the representa-
tion variety, we will replace the notion of CDGA (commutative
differential graded algebra) or DGLA (differential graded Lie al-
gebra) by a DGLA pair, which consists of a DGLA and a module
of that DGLA.

For results about the whole analytic germ, we will use the notion
of cohomology jump ideals (determinantal ideals), instead of
taking cohomology. This actually gives a more direct approach
to describe the deformation theory of V i

k(X , n).
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Differential Graded Lie Algebra

Definition

A DGLA (differential graded Lie algebra) (C •, d) is a complex of
C-vector space (C •, d) together with a Lie bracket
[−,−] : C i × C j → C i+j , satisfying the Leibnitz rule.

Example

Any Lie algebra can be realized as a DGLA concentrating on
degree zero.

Example

Let X be a connected smooth manifold, and let L be a local
system on X . Then the global de Rham complex Ω•DR(End(L)) of
End(L) is a DGLA. The Lie bracket is defined by
[f ⊗ θ, g ⊗ η] = [f , g ]⊗ θ ∧ η, where f and g are C∞ global
sections of End(L), θ and η are differential forms on X .
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Deformation theory attached to a DGLA

Definition

Given a DGLA C •, one can associate a deformation functor
Def (C •) from the category of Artinian local rings of finite type
over C to the category of sets

A 7→
{
ω ∈ C 1 ⊗C A | dω + 1

2 [ω, ω] = 0
}

exp(C 0 ⊗C m)

where m is the maximal ideal in A.

We should consider the set to be the space of flat connections and
exp(C 0 ⊗C m) acts on the set as “gauge transformation” (change
of coordinates). The formula of the action is standard, but a little
complicated.
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Deformation theory attached to a DGLA

Let X be a connected smooth manifold with base point x , and let
L be a local system on X . Let ε : Ω•DR(End(L))→ End(L)|x be
the restriction map. Denote the kernel of ε by Ω•DR(End(L))ε.
Then Ω•DR(End(L))ε is also a DGLA.

Theorem (Goldman-Millson)

The coordinate ring of the analytic germ of R(X , n) at ρ represents
the functor Def (Ω•DR(End(Lρ))ε).

Theorem (Deligne-Goldman-Millson-Schlessinger-Stasheff)

Suppose f : C • → D• is 1-equivalent, i.e., f induces isomorphisms
on H0, H1 and monomorphism on H2. Then the induced functor
f∗ : Def (C •)→ Def (D•) is an equivalence of categories.
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Deformation theory attached to a DGLA

Remark

Suppose X is a compact Kähler manifold. Using the above two
theorems and some formality result of Simpson, one can give a
rather simple description of the analytic germ of the representation
variety R(X , n) at a point corresponding to a semi-simple
representation. In particular, such an analytic germ is quadratic.

We want to find a similar theory, which works more generally for
cohomology jump loci.
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DGLA pairs

Definition

Let (C •, dC ) be a DGLA. A module of C • is a complex of C-vector
spaces (M•, dM) together with a bilinear multiplication map
· : C i ×M j → M i+j satisfying the following identities

dM(α · s) = dCα · s + (−1)deg(α)α · dMs

and
[α, β] · s = α · (β · s)− (−1)deg(α) deg(β)β · (α · s).

Definition

A DGLA pair consists of a DGLA C • and a C •-module M•. We
write such a DGLA pair by (C •,M•).
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DGLA pairs

Remark

Consider (M•, dM) as a complex of vector spaces. Then End(M•)
has a natural DGLA structure. In fact,

End j(M•) =
⊕
i

Hom(M i ,M i+j)

and
[α, β] = αβ − βα ∈ End(M•).

The multiplication · : C •×M• → M• is equivalent to a linear map

· : C • → End(M•).

The condition on the multiplication is equivalent to the above
morphism being a morphism of DGLA. In this sense, it is
considered earlier by M. Manetti.



DGLA pairs

Example

Under the same notations as before, (Ω•DR(End(L)),Ω•DR(L)) is a
DGLA pair.

Example

Let X be a connected complex manifold, and let E be a
holomorphic vector bundle. We use Ω•Dol to denote the Dolbeault
complex of a holomorphic vector bundle. Then
(Ω•Dol(End(E )),Ω•Dol(E ⊗OX

Ωp
X )) is a DGLA pair.

Using this DGLA pair, we can study the Hpq cohomology jump loci
in the moduli space of stable holomorphic vector bundles on X .
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DGLA pairs

Definition

A morphism f : (C •,M•)→ (D•,N•) of DGLA pairs consists of a
morphism of DGLA f1 : C • → D• and a morphism of complexes
f2 : M• → N• which is compatible with the multiplication map.

Definition

A morphism of complexes is called q-equivalent, if it induces
isomorphism on i-th cohomology for i ≤ q and monomorphism on
(q + 1)-th cohomology. A morphism f : (C •,M•)→ (D•,N•) of
DGLA pairs is called q-equivalent, if f1 : C • → D• is 1-equivalent
and f2 : M• → N• is q-equivalent. Two DGLA pairs are called of
the same q-homotopy type, if they can be connected by a zigzag of
q-equivalent morphisms.
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The main goal

Simiar to the theorems of D-G-M-S-S and G-M, we will define a
deformation functor Def ik (C •,M•) associated to any DGLA pair
(C •,M•). Moreover, we want the parallel theorems to hold.

Theorem

Suppose ρ ∈ V ik(X , n). Then the analytic germ of V ik(X , n) at ρ
represents the functor Def ik (Ω•DR(End(Lρ))ε,Ω

•
DR(Lρ)).

Theorem

The deformation functor Def ik (C •,M•) only depends on the i-th
homotopy type of the DGLA pair (C •,M•).
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Formal DGLA pairs

Definition

A DGLA pair (C •,M•) is called formal, if it is of the same
homotopy type as (H•(C •),H•(M•)).

Proposition (Simpson)

If X is a compact Kähler manifold, and if L is a local system whose
monodromy representation is semi-simple, then
(Ω•DR(End(L)),Ω•DR(L)) is formal.
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Formal DGLA pairs

Corollary

Let X be a compact Kähler manifold and let L be a local system
whose monodromy representation is semi-simple. Suppose
L ∈ V ik(X , n). We define

Ri
k(X , L) = {ξ ∈ H1(X ,End(L)) | ξ∧ξ = 0, dimH i (H•(L),∧ξ) ≥ k}

Then there is an isomorphism between analytic germs

V ik(X , n)(L) ∼= Ri
k(X , L)(0)



Cohomology jump ideal

To define the deformation functor Def ik , we need first the notion of
cohomology jump ideals, which is similar to fitting ideals.

Definition-Proposition

Let R be a noetherian ring, and let K • be a bounded above
complex of R-modules. Suppose H i (K •) is a finitely generated
R-module for every i ∈ Z. Then there exists a bounded above
complex of finitely generated free R-modules (F •, d•), which is
quasi-isomorphic to K •. The cohomology jump ideal J ik(K •) is
defined to be the determinantal ideal Ili−k+1(d i−1⊕ d i ), where l1 is
the rank of F i . This definition is independent of the choice of F •.

Remark

When R is a field, dimH i (K •) ≥ k if and only if J ik(K •) = 0.
J ik(K •) = 0 is the analog for rankRH

i (K •) ≥ k, which does not
make sense when R is an Artinian local algebra.
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Definition of the deformation functor Def ik

Let (C •,M•) be a DGLA pair, and suppose Hq(M•) is a finite
dimensional C-vector space for every q ∈ Z.

Recall that Def (C •)
is the functor from the category of Artinian local C-algebras to the
category of sets defined by

Def (C •)(A) =

{
ω ∈ C 1 ⊗C A | dω + 1

2 [ω, ω] = 0
}

exp(C 0 ⊗C m)
.

Given any {ω ∈ C 1 ⊗C A | dω + 1
2 [ω, ω] = 0}, there is a complex

(M• ⊗C A, dω), where dω = d ⊗ idA + ω. The condition
dω + 1

2 [ω, ω] = 0 implies d2
ω = 0.
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Definition of the deformation functor Def ik

Proposition

The action of exp(C 0 ⊗C m) on “the space of flat connections”{
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}

preserves the subset{
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1

2
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}
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Thus we can define:
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Some remarks

Remark

The DGLA pair associated to the origin of R(X , n) is

(Ω•DR(X )⊗C End(Cn),Ω•DR(X )⊗C Cn).

Thus we recover the theorem of Dimca-Papadima that the analytic
germ of the cohomology jump loci at origin only depends on the
rational homotopy type of X .

Remark

Using DGLA pairs, we can not only study the cohomology jump
loci in the representation variety, we can also study the
cohomology jump loci in the moduli space of stable vector bundles,
in the moduli space of irreducible local systems, or in the moduli
space of Higgs bundles.
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Some remarks

Remark

Using DGLA pairs, we can study the relative cohomology jump
loci. For example, fixing any local system V , we can define the
relative cohomology jump loci

V ik(X , n;V ) = {ρ ∈ R(X , n) | dimH i (X , Lρ ⊗C V ) ≥ k}.

Now, the DGLA pair controlling the deformation problem is
(Ω•DR(End(Lρ))ε,Ω

•
DR(Lρ ⊗C V ))

Remark

Instead of Gl(n,C) representations, one can also consider the
representation variety of any complex reductive algebraic group.
The whole theory will work the same.
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Mulţumesc!


