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Motivation

What topological spaces are homeomorphic (or ho-
motopy equivalent) to a smooth complex projective
variety (or a compact Kähler manifold)?

According to classical Hodge theory, if X is a compact
Kähler manifold of dimension n, then b2k(X ) 6= 0 for
1 ≤ k ≤ n−1 and b2k−1(X ) are even for 1 ≤ k ≤ n.

In this talk, we will give some constraints of the ho-
motopy type of smooth complex quasi-projective va-
rieties.
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Non-abelian Hodge theory and cohomology jump loci

Our talk only concerns rank one “non-abelian” Hodge theory.

If X is connected, a rank one local system on X is equivalent to a
C∗ representation of π1(X ), i.e., an element in

Hom(π1(X ),C∗) = Hom(H1(X ,Z),C∗).

We denote the space of rank one local system on X by MB(X ).
MB(X ) is isomorphic to the direct product of (C∗)b1(X ) and a
finite abelian group, and hence it is an abelian algebraic group.
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Non-abelian Hodge theory and cohomology jump loci

The non-abelian Hodge theory due to Simpson says “the space of
local systems is equal to the space of Higgs bundles”. In the rank
one case, it says when X is a compact Kähler manifold,

MB(X )
by definition

== Hom(π1(X ),C∗) ∼= Picτ (X )× H0(X ,Ω1
X ).

Here the isomorphism is an isomorphism of real Lie groups, not
complex Lie groups.

However, we will not use this at all in this talk. Instead, we need to
introduce our main player, the cohomology jump loci in MB(X ),

Σi
k(X )

def
= {L ∈MB(X ) | dimH i (X , L) ≥ k}.

They are closed subvarieties defined over Q.



Non-abelian Hodge theory and cohomology jump loci

The non-abelian Hodge theory due to Simpson says “the space of
local systems is equal to the space of Higgs bundles”. In the rank
one case, it says when X is a compact Kähler manifold,

MB(X )
by definition

== Hom(π1(X ),C∗) ∼= Picτ (X )× H0(X ,Ω1
X ).

Here the isomorphism is an isomorphism of real Lie groups, not
complex Lie groups.

However, we will not use this at all in this talk. Instead, we need to
introduce our main player, the cohomology jump loci in MB(X ),

Σi
k(X )

def
= {L ∈MB(X ) | dimH i (X , L) ≥ k}.

They are closed subvarieties defined over Q.



The result of Green-Lazarsfeld, Arapura and Simpson

The cohomology jump locus is a general notion defined for any
connected topological space of the homotopy type of a finite
CW-complex. It is a homotopy invariant. In general, it can be any
subvariety of a torus.

Theorem (Green-Lazarsfeld, Arapura)

If X is a compact Kähler manifold, then Σi
k(X ) ⊂MB(X ) is finite

union of translates of subtori, for any i , k ∈ N.

Theorem (Simpson)

If X is a smooth complex projective variety, then Σi
k(X ) ⊂MB(X )

is finite union of torsion translates of subtori, for any i , k ∈ N.

These two theorems give nontrivial constraints on the possible
homotopy type of compact Kähler manifolds and smooth complex
projective varieties.
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The result of Dimca-Papadima, Budur-W.

Arapura hinted that at least the first theorem of Green-Lazarsfeld
and Arapura should be true for smooth complex quasi-projective
varieties.

Theorem (Dimca-Papadima)

Suppose X is a smooth complex quasi-projective variety. Any
irreducible component of Σi

k(X ) containing the trivial local system
is a subtorus.

Theorem (Budur-W.)

Suppose X is a smooth complex quasi-projective variety. Then
Σi
k(X ) is a finite union of torsion translates of subtori.
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Examples

Example (A trivial example)

Let X be a compact Riemann surface of genus g ≥ 1. Since
H1(X ,Z) = Z2g , MB(X ) = (C∗)2g .

Denote by CX the trivial rank
one local system on X . Then

H0(X ,CX ) = C, H1(X ,CX ) = C2g , H2(X ,CX ) = C.

Suppose L is a rank one local system on X which is not isomorphic
to the trivial local system CX . Then

H0(X , L) = 0, H1(X , L) = C2g−2, H2(X , L) = 0.

Therefore, all the cohomology jump loci are either the whole space
MB(X ), or the single point at the trivial local system {CX}, or
empty.
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Examples

Example (nontrivial)

Let σ = {σij} be an invertible n × n matrix with entries in Z.
Suppose none of the eigenvalues of σ is a root of unity. Define an
action of Z on (C∗)n ×C by l · (η, λ) = (σl · η, λ+ l), where l ∈ Z,
λ ∈ C, η = {ηk} ∈ (C∗)n and σl · η = {

∏
j η

σij

j }1≤i≤n.
Now, denote by X the quotient of (C∗)n ×C by Z under the above
action. Since C/Z ∼= C∗, one can easily see that X is a (C∗)n fiber
bundle over C∗.

First, we compute π1(X ). Since X is a quotient of (C∗)n × C by
Z, π1(X ) ∼= Zn oσ Z. The condition that none of the eigenvalues
of σ is a root of unity implies that the normal subgroup Zn is
(almost) equal to the commutator subgroup of π1(X ). Hence
H1(X ,Z) ∼= Z, and MB(X ) ∼= Hom(H1(X ),C∗) ∼= C∗.
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Examples

Example (continued)

Next, we compute the cohomology jump loci Σ1
1(X ). For this

example, the best way to compute the cohomology of a local
system is to use group cohomology.
Recall that a rank one local system L on X is equivalent to a C∗
representation of π1(X ), which we denote by ρL. ρL : π1(X )→ C∗
puts a π1(X )-module structure on C by α · t = ρL(α)t, where
α ∈ π1(X ) and t ∈ C. We write CρL to emphasize the
π1(X )-module structure on C.

Since the universal cover of X is contractible,

H i (X , L) ∼= H i (π1(X ),CρL).

Now, using group cohomology, it is not hard to see that

Σ1
1(X ) = {eigenvalues of σ} ∪ {1} ⊂ C∗ =MB(X ).
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Examples

Conclusion

Since {eigenvalues of σ} consists of points that are not torsion, by
the theorem of Budur-W., X is not homotopy equivalent to any
quasi-projective variety.

Remark

Even when the universal cover of a topological space is not
contractible, the first cohomology of a local system can always be
computed via group cohomology, and hence only depends on the
fundamental group. Thus, both the theorems of Dimca-Papadima
and Budur-W. put nontrivial constraints on the possible
fundamental groups of a quasi-projective varieties. For example,
Zn oσ Z is not isomorphic to the fundamental group of any
quasi-projective variety.
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Proof of Theorem of Budur-W.

The idea behind the results of Green-Lazarsfeld, Arapura and
Dimca-Papadima can be summarized into one sentence: “the
obstruction of deforming elements in the cohomology group is
linear. ”

However, the proof of the theorem of Budur-W. is arithmetic. We
will first work with quasi-projective varieties that are defined over
Q̄.

Let X be a smooth complex quasi-projective variety, and let X̄ be
a good compactification. In other words, X is a smooth projective
variety and D = X̄ − X is a simple normal crossing divisor. Denote
the number of irreducible components of D by n.
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Proof of Theorem of Budur-W.

The following diagram plays an essential role in our proof.

0

��

0

��

0

��

Zn

��

Zn

��

0 //MDR(X̄ )

RH
��

//MDR(X̄/D)

RH
��

res // Cn

exp

��

0 //MB(X̄ ) //

��

MB(X )

��

ev // (C∗)n

��

0 0 0



Proof of Theorem of Budur-W.

This is a diagram of complex algebraic group (possibly not of finite
type). All complexes in the diagram are exact. All objects are
defined over Q̄. Horizontal maps are maps defined over Q̄.

MDR(X̄ ) is the moduli space of rank one flat bundles on X̄ .
MDR(X̄/D) is the moduli space of rank one flat bundles on X̄
with possible log poles along D.
res is the taking residue map.
ev is taking monodromy around each Di .
RH are the maps of Riemann-Hilbert correspondence.
ex is the composition of multiplication by 2πi and then taking
exponential.
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Proof of Theorem of Budur-W.

Σi
k(X ) ⊂MB(X ) is defined over Q. Using the hypercohomology

of logarithmic de Rham complexes, one can define similarly
cohomology jump loci Σi

k(X̄/D) in MDR(X̄/D). Away from some
small bad locus, RH(Σi

k(X̄/D)) = Σi
k(X ).

Proposition

Suppose V ⊂MDR(X̄/D) and W ⊂MB(X ) are closed
irreducible subvarieties defined over Q̄. Moreover, suppose
RH(V ) = W . Then W consists of a torsion point.

The proposition essentially follows from the next two theorems.
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Proof of Theorem of Budur-W.

Theorem (Simpson)

Suppose A ⊂ Σi
k(X̄ ) and B ⊂MB(X̄ ) are closed irreducible

subvarieties defined over Q̄. Moreover, suppose RH(A) = B. Then
B consists of a torsion point.

Theorem (Gelfond-Schneider)

Suppose C ⊂ Cn and D ⊂ (C∗)n are both defined over Q̄, and
suppose exp(C ) = D. Then D consists of a torsion point.
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Proof of Theorem of Budur-W.

Now, it follows from the proposition that any irreducible
component of Σi

k(X ) consists of a torsion point. By taking a finite
cover of X , one can move the point to origin. Then the theorem of
Budur-W. follows from the theorem of Dimca-Papadima. Thus we
have proved that when X is defined over Q̄, Σi

k(X ) is finite union
of torsion translates of subtori.

In general, one can prove that for any smooth complex
quasi-projective variety X , there exists another smooth complex
quasi-projective variety X ′ defined over Q̄ such that X ′ is
homeomorphic to X . Since our statement is topological, it is true
for any smooth complex quasi-projective variety.
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Some further questions

Question

If X is a compact Kähler manifold or a quasi-Kähler manifold, does
every irreducible component of Σi

k(X ) contain a torsion point?

Question

Can one say anything about the dimensions of Σi
k(X ) when X is a

quasi-projective variety?

Question

How about higher rank analog?
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Some further questions

When X is defined over Q̄, it seems plausible to replace torsion
point by a Q-variation of Hodge structure whose Gauss-Manin
connection is defined over Q̄.

Being more optimistic, Arapura made the following conjecture,
which refines a conjecture of Simpson.

Conjecture

When X is a smooth projective variety, every nonempty Σi
k(X )

contains a motivic point (a point of geometric origin).
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