Enumerative geometry of hyperplane arrangements

Max Wakefield
Department of Mathematics
US Naval Academy

Joint work with Will Traves and Thomas Paul

Partially supported by the Simons Foundation and the Office of Naval Research.

June 29, 2013

Outline

Introduction

Warm up examples

- Introduction
- Warm up examples
- Multivariate Tutte Polynomial
- Characteristic Numbers of generic arrangements
- Counting Cones of generic arrangements

Classical enumerative geometry

"Counting some algebraic varieties that satisfy certain geometric conditions."

Typical problems:

- How many conic sections are tangent to five given lines in the projective plane?
- How many lines in \mathbb{R}^{3} pass through 4 general lines?

Note: Usually the varieties in these problems do not have much more structure than their dimension and degree.

Arrangement setting

Choose a matroid or geometric lattice L with rank $r+1$.
$\mathcal{M}(L)=$ "the set of hyp arr's in \mathbb{P}^{r} with lattice L "
Main question: What is the degree N_{L} of $\mathcal{M}(L)$?
Classical Enumerative Geometry view:

- Let $D=\operatorname{dim} \mathcal{M}(L)$
- Fix D general position points in \mathbb{P}^{r}.
- How many arrangements N_{L} with intersection lattice $\cong L$ contain these D points?

Easy example

Introduction
Warm up examples

Tutte
Polynomial

Then $r=2$ and $D=4$ but view this in \mathbb{P}^{2}.
Question: How many different pairs of lines in \mathbb{P}^{2} contain 4 points?

Answer: $N_{L}=\binom{4}{2} / 2!=3$

Easy example

Introduction
Warm up examples

Tutte
Polynomial

Then $r=2$ and $D=4$ but view this in \mathbb{P}^{2}.
Question: How many different pairs of lines in \mathbb{P}^{2} contain 4 points?

Answer: $N_{L}=\binom{4}{2} / 2!=3$

Wakefield

Introduction

Warm up examples

Tutte
Polynomial
Characteristic Numbers

Cones of
generic
arrangements

Easy example

Then $r=2$ and $D=4$ but view this in \mathbb{P}^{2}.
Question: How many different pairs of lines in \mathbb{P}^{2} contain 4 points?

Answer: $N_{L}=\binom{4}{2} / 2!=3$

Easy example

Introduction
Warm up examples

Tutte
Polynomial

Then $r=2$ and $D=4$ but view this in \mathbb{P}^{2}.
Question: How many different pairs of lines in \mathbb{P}^{2} contain 4 points?

Answer: $N_{L}=\binom{4}{2} / 2!=3$

Generic Arrangements

An arrangement $\mathcal{G}_{n, k}=\left\{H_{1}, \ldots, H_{k}\right\}$ in \mathbb{P}^{n} is generic if the intersection of any $n+1$ hyperplanes

$$
H_{i_{1}} \cap \cdots \cap H_{i_{n+1}}=\overrightarrow{0}
$$

$\operatorname{dim} \mathcal{M}\left(G_{n, k}\right)=n k$

Theorem (Carlini)
The number of generic arrangements of size k in \mathbb{P}^{n} through nk points is

$$
N_{\mathcal{G}_{n, k}}=\frac{1}{k!}\binom{k n}{n}\binom{(k-1) n}{n} \cdots\binom{n}{n}=\frac{(k n)!}{k!(n!)^{k}} .
$$

This came up when studying the Chow variety of zero dimensional degree k cycles in \mathbb{P}^{n}.
$\operatorname{dim} \mathcal{M}\left(S_{k}\right)=k+2$
Proposition: The number of star arrangements S_{k} that contain $k+2$ points is

$$
N_{S_{k}}=\binom{k+2}{2,2, k-2} / 2=3\binom{k+2}{4}
$$

Multivariate Tutte polynomial

Introduction
Warm up examples

Tutte

 PolynomialCharacteristic Numbers

Cones of generic arrangements

The multivariate Tutte polynomial of an arrangement $\mathcal{A}=\left\{H_{1}, \ldots, H_{k}\right\}$ is

$$
Z_{\mathcal{A}}\left(q, v_{1}, \ldots, v_{k}\right)=\sum_{\mathcal{B} \subseteq \mathcal{A}} q^{-r k(\mathcal{B})} \prod_{H_{i} \in \mathcal{B}} v_{i}
$$

$\mathcal{G}_{2, k}$ - a generic arrangement in \mathbb{P}^{2}
Fact: $\quad N_{\mathcal{G}_{2, k}}=Z_{\mathcal{G}_{2, k}}(1,0,2,4, \ldots, 2(k-1))=(2 k-1)!!$

Characteristic numbers

For an arrangement \mathcal{A} in \mathbb{P}^{n} and integers p, ℓ such that $p+\ell=\operatorname{dim} \mathcal{M}(\mathcal{A})$ the characteristic numbers are
$N_{\mathcal{A}}(p, \ell)=$ the number of arrangements combinatorially
equivalent to \mathcal{A} that contain p points and are tangent to ℓ lines

- $N_{\mathcal{A}}=N_{\mathcal{A}}(\operatorname{dim} \mathcal{M}(\mathcal{A}), 0)$
- $N_{\mathcal{A}}(p, \ell)$ are in general very difficult to compute
- Usually if you can compute all the characteristic numbers for your object then you can compute all enumerative problems with that object.
- To compute this we will need the class of a curve is the number of lines passing through a given general point and tangent to the curve at a simple point. For example, the class of a smooth curve of degree d is $d(d-1)$.

Characteristic polynomial

Adapting a Fulton-MacPherson theorem to line arrangements in \mathbb{P}^{2} we get:

Theorem

The number of line arrangements with intersection lattice isomorphic to $L_{\mathcal{A}}$ through p points and tangent to $D-p$ smooth curves of degrees n_{1}, \ldots, n_{D-p} and classes m_{1}, \ldots, m_{D-p} in general position is

- write down

$$
\mathcal{C}=\mu^{p} \prod_{i=1}^{D-p}\left(m_{i} \mu+n_{i} \nu\right)
$$

- expand the polynomial \mathcal{C}
- plug in the characteristic numbers for each term in the expansion $N_{\mathcal{A}}(k, D-k)=\mu^{k} \nu^{D-k}$
- sum all terms.

3 and 4 generic lines in \mathbb{P}^{2}

Theorem (Paul, Traves, W.)

p	0	1	2	3	4	5	6
$N_{\mathcal{G}_{2,3}}(p, 6-p)$	15	30	48	57	48	30	15

Theorem (Paul, Traves, W.)

p	0	1	2	3	4	5	6	7	8
$N_{\mathcal{G}_{2,4}}(p, 8-p)$	16695	17955	13185	8190	4410	2070	855	315	105

- Do each example separately.
- Examine the Chow ring of $A=A\left[\left(\mathbb{P}^{2 *}\right)^{k} \times\left(\mathbb{P}^{2}\right)^{s}\right]$ where $s=\left|L(\mathcal{A})_{2}\right|=$ the number of intersection points of lines in \mathcal{A}.
- $A=A\left[\left(\mathbb{P}^{2 *}\right)^{k} \times\left(\mathbb{P}^{2}\right)^{s}\right] \cong \frac{\mathbb{Z}\left[x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{s}\right]}{\left(x_{1}^{3}, \ldots, x_{k}^{3}, y_{1}^{3}, \ldots, y_{s}^{3}\right)}$
- Form a class $[\mathcal{M}(\mathcal{A})] \in A$ that represents the moduli space and the tangency conditions.
- Expand this class in A.
- The coefficient of this class is $N_{\mathcal{A}}(p, \ell)$
- WARNING: Many of these cases have excess intersection and multiplicities that must be accounted for.

The projective dual of $\mathcal{G}_{2,4}$ is the braid arrangement A_{3}

$N_{\mathcal{G}_{2,4}}(0,8)$
The projective dual of $\mathcal{G}_{2,4}$ is the braid arrangement A_{3}

Warm up examples

Tutte
Polynomial
Characteristic Numbers

The projective dual of $\mathcal{G}_{2,4}$ is the braid arrangement A_{3}

The dual of the 8 line conditions for $\mathcal{G}_{2,4}$ are 8 point conditions for A_{3}.

The projective dual of $\mathcal{G}_{2,4}$ is the braid arrangement A_{3}

The dual of the 8 line conditions for $\mathcal{G}_{2,4}$ are 8 point conditions for A_{3}. Hence

$$
\begin{gathered}
N_{\mathcal{G}_{2,4}}(0,8)=16695=\text { number of braid arrangements } \\
\text { that contain } 8 \text { general points }
\end{gathered}
$$

Cones of generic arrangements

An arrangement \mathcal{A} of $k \geq n$ hyperplanes in \mathbb{P}^{n} is called a generic d-cone if there is a linear space X of dimension d common to all the hyperplanes in \mathcal{A} and if no point outside of X lies on more than n of the hyperplanes.

Any generic d-cone \mathcal{A} is a cone over the generic arrangement in \mathbb{P}^{n-d-1}, obtained by replacing each hyperplane in \mathbb{P}^{n-d-1} by the linear span of the hyperplane and X.

Generic d-cones in \mathbb{P}^{n}

Let \mathcal{A} be a generic d-cone arrangement of k hyperplanes in \mathbb{P}^{n}.

Then \mathcal{A} is determined by
(1) $X \in \mathbb{G}(d, n)=$ the Grassmanian of d-dimensional linear subspaces of \mathbb{P}^{n}
2 k points in $\mathbb{P}\left(\mathbb{C}^{n+1} / X\right)=\mathbb{P}^{n-d-1}$
$D=\operatorname{dim} \mathcal{M}(\mathcal{A})=\mathbb{G}(d, n) \times\left(\mathbb{P}^{n-d}\right)^{k}=$ $(d+1)(n-d)+k(n-d-1)$

In order to get $N_{\mathcal{A}}$ we will need to know how many ways there are to choose X and satisfy our point conditions.

This is exactly the subject of Schubert calculus.

Schubert Calculus

$H^{*}(\mathbb{G}(d, n), \mathbb{Z})$ is generated by σ_{α} where α is a $d+2$ tuple of non-increasing non-negative integers $\alpha_{i} \leq d-n$.

The products of these classes are given by the Pieri and Giambelli formulas.

If $\left|\alpha_{1}\right|+\cdots+\left|\alpha_{t}\right|=\operatorname{dim} \mathbb{G}(d, n)=(n-d)(d+1)$ then the product has well defined degree denoted $\int_{\mathbb{G}(d, n)} \sigma_{\alpha_{1}} \cdots \sigma_{\alpha_{t}}$ which is the number of d planes in the intersection of the corresponding Schubert varieties.

- Let $(1, \ldots, 1,0, \ldots, 0)=: 1^{i}$ where there are $i 1$'s.
- For $s=\left(s_{0}, \ldots, s_{d+1}\right) \in \mathbb{N}^{d+2}$ let

$$
\sigma^{s}=\prod_{i=0}^{d+1} \sigma_{1 i}^{s_{i}}
$$

Main theorem

Theorem (Paul, Traves, W.) If \mathcal{A} is a generic d-cone in \mathbb{P}^{n} consisting of k hyperplanes then the the number of generic d-cones that pass through $D=(d+1)(n-d)+k(n-d-1)$ points in general position is $N_{\mathcal{A}}=$

$$
\left.\frac{\sum_{\Gamma} \sigma^{s}\left(s_{0}, s_{1}, \ldots, s_{d+1}\right.}{k}\right)\left(\begin{array}{l}
\left.(n)^{s_{d+1}},(n-1)^{s_{d}, \ldots,(n-(d+1))^{s_{0}}}\right)
\end{array},\right.
$$

where $\Gamma=$

$$
\left\{\left(s_{0}, \ldots, s_{d+1}\right) \in \mathbb{N}^{d+2}: \sum_{i=0}^{d+1} i s_{i}=\operatorname{dim} \mathbb{G}(d, n), \sum_{i=0}^{d+1} s_{i}=k\right\}
$$

Introduction

Warm up examples

Tutte
Polynomial
Characteristic Numbers

Mulţumesc!!!

generic 0-cones from \mathbb{P}^{1} to \mathbb{P}^{2}

Theorem (Paul, Traves, W.)
If \mathcal{A} is a generic 0 -cone of k lines in \mathbb{P}^{2} then $\operatorname{dim} M(\mathcal{A})=k+2$ and the characteristic numbers are $N_{\mathcal{A}}(k+2,0)=3\binom{k+2}{4}, N_{\mathcal{A}}(k+1,1)=\binom{k+1}{2}, N_{\mathcal{A}}(k, 2)=1$. All other characteristic numbers are 0 .

Note: To be tangent to a line an intersection point of the arrangement must be on the line.

For a generic 0 -cone to be tangent to 2 lines then the unique intersection point of the arrangement must be on the intersection point of the 2 lines. Then the k-points uniquely determine the arrangement.

