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Classical enumerative geometry

“Counting some algebraic varieties that satisfy certain
geometric conditions.”

Typical problems:
• How many conic sections are tangent to five given lines in
the projective plane?

• How many lines in R3 pass through 4 general lines?

Note: Usually the varieties in these problems do not have
much more structure than their dimension and degree.
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Arrangement setting

Choose a matroid or geometric lattice L with rank r + 1.

M(L)=“the set of hyp arr’s in Pr with lattice L”

Main question: What is the degree NL ofM(L)?

Classical Enumerative Geometry view:
• Let D = dimM(L)

• Fix D general position points in Pr .

• How many arrangements NL with intersection lattice ∼= L
contain these D points?
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Easy example

•

••

•

Let L =

Then r = 2 and D = 4 but view this in P2.
Question: How many different pairs of lines in P2 contain 4
points?

Answer: NL =
(4

2

)
/2! = 3

•

••

•
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Generic Arrangements
An arrangement Gn,k = {H1, . . . ,Hk} in Pn is generic if the
intersection of any n + 1 hyperplanes

Hi1 ∩ · · · ∩ Hin+1 = ~0

dimM(Gn,k ) = nk

Theorem (Carlini)
The number of generic arrangements of size k in Pn through
nk points is

NGn,k =
1
k !

(
kn
n

)(
(k − 1)n

n

)
· · ·
(

n
n

)
=

(kn)!

k !(n!)k .

This came up when studying the Chow variety of zero
dimensional degree k cycles in Pn.
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Star arrangements in P2: •
A star arrangement Sk = {H1, . . . ,Hk} in P2 has

k⋂
I=1

Hi = pt .

dimM(Sk ) = k + 2

Proposition: The number of star arrangements Sk that
contain k + 2 points is

NSk =

(
k + 2

2,2, k − 2

)
/2 = 3

(
k + 2

4

)

•

•• ••
• • •••
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Multivariate Tutte polynomial

The multivariate Tutte polynomial of an arrangement
A = {H1, . . . ,Hk} is

ZA(q, v1, . . . , vk ) =
∑
B⊆A

q−rk(B)
∏

Hi∈B
vi

G2,k – a generic arrangement in P2

Fact: NG2,k = ZG2,k (1,0,2,4, . . . ,2(k − 1)) = (2k − 1)!!
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Characteristic numbers
For an arrangement A in Pn and integers p, ` such that
p + ` = dimM(A) the characteristic numbers are

NA(p, `) = the number of arrangements combinatorially

equivalent to A that contain p points and are tangent to ` lines

• NA = NA(dimM(A),0)
• NA(p, `) are in general very difficult to compute
• Usually if you can compute all the characteristic numbers
for your object then you can compute all enumerative
problems with that object.
• To compute this we will need the class of a curve is the
number of lines passing through a given general point and
tangent to the curve at a simple point. For example, the
class of a smooth curve of degree d is d(d − 1).
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Characteristic polynomial

Adapting a Fulton-MacPherson theorem to line
arrangements in P2 we get:

Theorem
The number of line arrangements with intersection lattice
isomorphic to LA through p points and tangent to D − p
smooth curves of degrees n1, . . . ,nD−p and classes
m1, . . . ,mD−p in general position is
• write down

C = µp
D−p∏
i=1

(miµ+ niν)

• expand the polynomial C
• plug in the characteristic numbers for each term in the
expansion NA(k ,D − k) = µkνD−k

• sum all terms.
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3 and 4 generic lines in P2

Theorem (Paul, Traves, W.)
p 0 1 2 3 4 5 6
NG2,3(p,6− p) 15 30 48 57 48 30 15

Theorem (Paul, Traves, W.)
p 0 1 2 3 4 5 6 7 8
NG2,4

(p, 8 − p) 16695 17955 13185 8190 4410 2070 855 315 105

• Do each example separately.
• Examine the Chow ring of A = A[(P2∗)k × (P2)s] where
s = |L(A)2| =the number of intersection points of lines in A.
• A = A[(P2∗)k × (P2)s] ∼= Z[x1,...,xk ,y1,...,ys]

(x3
1 ,...,x

3
k ,y

3
1 ,...,y

3
s )

• Form a class [M(A)] ∈ A that represents the moduli
space and the tangency conditions.
• Expand this class in A.
• The coefficient of this class is NA(p, `)
•WARNING: Many of these cases have excess intersection
and multiplicities that must be accounted for.
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NG2,4(0,8)
The projective dual of G2,4 is the braid arrangement A3

• ••

•
••

•

•

•

•

The dual of the 8 line conditions for G2,4 are 8 point
conditions for A3.
Hence

NG2,4(0,8) = 16695 = number of braid arrangements

that contain 8 general points
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Cones of generic arrangements

An arrangement A of k ≥ n hyperplanes in Pn is called a
generic d-cone if there is a linear space X of dimension d
common to all the hyperplanes in A and if no point outside
of X lies on more than n of the hyperplanes.

Any generic d-cone A is a cone over the generic
arrangement in Pn−d−1, obtained by replacing each
hyperplane in Pn−d−1 by the linear span of the hyperplane
and X .
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Generic d-cones in Pn

Let A be a generic d-cone arrangement of k hyperplanes in
Pn.

Then A is determined by

1 X ∈ G(d ,n)=the Grassmanian of d-dimensional linear
subspaces of Pn

2 k points in P(Cn+1/X ) = Pn−d−1

D = dimM(A) = G(d ,n)× (Pn−d )k =
(d + 1)(n − d) + k(n − d − 1)

In order to get NA we will need to know how many ways
there are to choose X and satisfy our point conditions.

This is exactly the subject of Schubert calculus.
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Schubert Calculus
H∗(G(d ,n),Z) is generated by σα where α is a d + 2 tuple
of non-increasing non-negative integers αi ≤ d − n.

The products of these classes are given by the Pieri and
Giambelli formulas.

If |α1|+ · · ·+ |αt | = dimG(d ,n) = (n − d)(d + 1) then the
product has well defined degree denoted

∫
G(d ,n) σα1 · · ·σαt

which is the number of d planes in the intersection of the
corresponding Schubert varieties.
• Let (1, . . . ,1,0, . . . ,0) =: 1i where there are i 1’s.
• For s = (s0, . . . , sd+1) ∈ Nd+2 let

σs =
d+1∏
i=0

σsi
1i
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Main theorem

Theorem (Paul, Traves, W.)
If A is a generic d-cone in Pn consisting of k hyperplanes
then the the number of generic d-cones that pass through
D = (d + 1)(n− d) + k(n− d − 1) points in general position
is NA =∑

Γ

σs( k
s0,s1,...,sd+1

)( D
(n)sd+1 ,(n−1)sd ,...,(n−(d+1))s0

)
k !

,

where Γ ={
(s0, . . . , sd+1) ∈ Nd+2 :

d+1∑
i=0

isi = dimG(d ,n),
d+1∑
i=0

si = k

}
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Mulţumesc!!!
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generic 0-cones from P1 to P2

Theorem (Paul, Traves, W.)
If A is a generic 0-cone of k lines in P2 then
dim M(A) = k + 2 and the characteristic numbers are
NA(k + 2,0) = 3

(k+2
4

)
, NA(k + 1,1) =

(k+1
2

)
, NA(k ,2) = 1.

All other characteristic numbers are 0.

Note: To be tangent to a line an intersection point of the
arrangement must be on the line.

For a generic 0-cone to be tangent to 2 lines then the
unique intersection point of the arrangement must be on the
intersection point of the 2 lines. Then the k -points uniquely
determine the arrangement.
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