Elliptic surfaces and Zariski pairs for conic-line arrangements

1

1

Hiro-o Tokunaga Tokyo Metropolitan University Joint international meeting of AMS and RMS Alba-Iulia, 29 June 2013

Motivation and Background

- S: a set of finite number primes $\{p_1, \ldots, p_s\}$. Study Galois extensions K/\mathbb{Q} such that \mathcal{O}_K is ramified at most over S, where \mathcal{O}_K is the ring of integers in K. And how primes $q \notin S$ behaves $(\langle q \rangle_{\mathcal{O}_K} = \mathfrak{P}_1 \cdots \mathfrak{P}_t)$
- D_1, \ldots, D_s : irreducible curves on \mathbb{P}^2 .

Study Galois extensions $K/\mathbb{C}(x, y)$ such that <u>the normalization of \mathbb{P}^2 in K gives rise to Galois covers of $\mathbb{P}^2(\pi: \chi \to \mathcal{P}^2)$ </u> ramified over at most $D_1 \cup \ldots \cup D_s$. And how other curves $C(\sharp D_i)$ behaves $(\pi^*C = C_1 + \cdots + C_r, p^{roperties} \in C_1, \cdots, C_r)$ 'number theory' over $\mathbb{C}(x, y)$

In this talk

- Geometry and arithmetic of sections of elliptic surfaces
- Double covers of P²
- Study on Galois covers of P² with given branch set. In our case, the Galois group is isomorphic to the dihedral group D_{2p} of oder 2p, p: odd prime
- Applications: **Zariski pair for conic-line arrangement** and Zarisk *N*-tuple for conic arrangements (with S. Bannai)

We explain our approach through an example:

Example

Consider two conic-line arrangements B_1 and B_2 in \mathbb{P}^2 as follows:

Theorem

Let B_1 and B_2 be the conic-line arrangements as in the previous slide. Then

 $\not\exists$ homeomorphism $h : \mathbb{P}^2 \to \mathbb{P}^2$ such that $h(B_1) = B_2$. *i.e.*, (B_1, B_2) is a Zariski pair

Elliptic surfaces

Elliptic surface S: a smooth projective fibered surface $\varphi : S \to C$ over a smooth projective curve, C, as follows:

- (i) \exists finite subset, $\operatorname{Sing}(\varphi) \neq \emptyset \subset C$ such that $\varphi^{-1}(v)$ is a smooth curve of genus 1 (resp. a singular curve) for $v \notin \operatorname{Sing}(\varphi)$ (resp. $v \in \operatorname{Sing}(\varphi)$).
- (ii) $\exists O: C \to S$ (we identify O with its image).
- (iii) $\not\exists$ exceptional curve of the first kind in any fiber.

In our case: $C = \mathbb{P}^1$.

Mordell-Weil group 1

MW(S): the set of sections of S. (We identify a section with its image on S.)

- 1. MW(S) can be regarded as an Abelian group under fiberwise addition, O being the zero element.
- 2. MW(S) is called the Mordell-Weil group of $\varphi : S \to \mathbb{P}^1$. Under our assumption, MW(S) is finitely generated (T. Shioda).

Mordell-Weil group 2

 $\dot{+}$: group law on MW(S).

[m]s: the multiplication-by-m map $(m \in \mathbb{Z})$ on MW(S) for $s \in MW(S)$.

Given $s_1, \ldots, s_k \in MW(S) \Rightarrow \sum_i [a_i] s_i$ another element of MW(S), a new curve on S.

- $Q := C_1 + L_1 + L_2$. $e.g. Q: (x-t^2)(x-3t+2)(x+3t+2)$
- $f'': S'' \to \mathbb{P}^2$: double cover with the branch locus $\Delta_{f''} = \mathcal{Q}$. $\mathcal{C}_{\mathcal{Q}}, \mathcal{Y}^2 = f(x, t)$
- x: a general point of C_1 ; and the pencil of lines through x.
- Λ_x : the pencil of lines through x; and Λ_x gives rise to a pencil of curves of genus 1, $\widetilde{\Lambda}_x$, on S''.
- Resolve singularities of S'' and the base points of $\tilde{\Lambda}_x$; and we denote the obtained surface by S and the resolution map by $\overline{\mu}$.
- $\varphi: S \to \mathbb{P}^1$ is induced by the pencil $\widetilde{\Lambda}_x$.

How to obtain B_1 and B_2

How do we obtain C_2 ?

- L_3 and L_4 give rise to sections $s_{L_3}^{\pm}$ and $s_{L_4}^{\pm}$ on S.
- $\overline{\mu} \circ f''([2]s_{L_3}^{\pm})$ and $\overline{\mu} \circ f''([2]s_{L_4}^{\pm})$ are both smooth conics as in C_2 (i.e., inscribing $C_1 + L_1 + L_2$).
- We may assume that $C_2 = \overline{\mu} \circ f''([2]s_{L_3}^{\pm})$.

One can see 'difference' between B_1 and B_2 in S, not in \mathbb{P}^2 !

Key Theorem

 $s_1, s_2 \in \mathrm{MW}(S).$

There exists a Galois cover of \mathbb{P}^2 such that

- the Galois group is isomorphic to D_{2p} ,
- the ramification indices along:

 $C_1, L_1 \text{ and } L_2 = 2,$ $\overline{\mu} \circ f''(s_i) = p \ (i = 1, 2)$

 $\Leftrightarrow s_1 \text{ and } s_2 \text{ give linearly dependent elements in } MW(S) \otimes \mathbb{Z}/p\mathbb{Z}.$

Remark. Key Theorem holds under more general setting.

Theorem follows from Key Theorem immediately as follows:

- $\{s_{L_3}^+, s_{L_4}^+\}$ forms a basis of the free part of MW(S).
- B₁: Put s₁ = s⁺_{L₃}, s₂ = [2]s⁺_{L₃}. There exists a Galois cover of ℙ² such that
 (i) the Galois group is isomorphic to D_{2p},
 - (ii) the ramification indices along

$$C_1, L_1 \text{ and } L_2 = 2,$$

$$L_3, C_2 = p.$$

 B_2 : Put $s_1 = s_{L_4}^+, s_2 = [2]s_{L_3}^+.$

There exists **no** Galois cover of \mathbb{P}^2 such that

- (i) the Galois group is isomorphic to D_{2p} ,
- (ii) the ramification indices: along C_1, L_1 and $L_2 = 2$; and along $L_4, C_2 = p$. $\operatorname{Rem} \stackrel{\circ}{} \stackrel{\Rightarrow}{=} \pi_4(p^*, B_2, +) \longrightarrow D_{2p}$

Thank you!