Elliptic surfaces and
 Zariski pairs for conic-line arrangements

Hiro-o Tokunaga
Tokyo Metropolitan University
Joint international meeting of AMS and RMS
Alba-Iulia, 29 June 2013

Motivation and Background

- S : a set of finite number primes $\left\{p_{1}, \ldots, p_{s}\right\}$.

Study Galois extensions K / \mathbb{Q} such that \mathcal{O}_{K} is ramified at most over S, where \mathcal{O}_{K} is the ring of integers in K. And how primes $q(\mathcal{S})$ behaves $\left(\langle q\rangle_{Q_{k}}=o_{1} \cdots q_{t}\right)$

- D_{1}, \ldots, D_{s} : irreducible curves on \mathbb{P}^{2}.

Study Galois extensions $K / \mathbb{C}(x, y)$ such that $\underline{\text { the normalization of } \mathbb{P}^{2} \text { in } K}$ gives rise to Galois covers of $\mathbb{P}^{2}\left(\pi: X \rightarrow \mathbb{P}^{2}\right)$
ramified over at most $D_{1} \cup \ldots \cup D_{s}$. And how other curves $C\left(\neq D_{i}\right)$
be haves ($\pi^{*} C=C_{1}+\cdots+c_{r}$, properties of C_{1}, \ldots, C_{r})
'number theory' over $\mathbb{C}(x, y)$

In this talk

- Geometry and arithmetic of sections of elliptic surfaces
- Double covers of \mathbb{P}^{2}
- Study on Galois covers of \mathbb{P}^{2} with given branch set. In our case, the Galois group is isomorphic to the dihedral group $D_{2 p}$ of oder $2 p, p$: odd prime
- Applications: Zariski pair for conic-line arrangement and Zarisk N-tuple for conic arrangements (with S. Bannai)

We explain our approach through an example:

Example

Consider two conic-line arrangements B_{1} and B_{2} in \mathbb{P}^{2} as follows:

Theorem

Let B_{1} and B_{2} be the conic-line arrangements as in the previous slide. Then
\nexists homeomorphism $h: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ such that $h\left(B_{1}\right)=B_{2}$.
i.e., $\left(B_{1}, B_{2}\right)$ is a Zariski pair

Elliptic surfaces

Elliptic surface S : a smooth projective fibered surface $\varphi: S \rightarrow C$ over a smooth projective curve, C, as follows:
(i) \exists finite subset, $\operatorname{Sing}(\varphi) \neq \emptyset \subset C$ such that $\varphi^{-1}(v)$ is a smooth curve of genus 1 (resp. a singular curve) for $v \notin \operatorname{Sing}(\varphi)$ (resp. $v \in \operatorname{Sing}(\varphi))$.
(ii) $\exists O: C \rightarrow S$ (we identify O with its image).
(iii) \nexists exceptional curve of the first kind in any fiber.

In our case: $C=\mathbb{P}^{1}$.

Mordell-Weil group 1

MW (S) : the set of sections of S. (We identify a section with its image on S.)

1. $\mathrm{MW}(S)$ can be regarded as an Abelian group under fiberwise addition, O being the zero element.
2. $\operatorname{MW}(S)$ is called the Mordell-Weil group of $\varphi: S \rightarrow \mathbb{P}^{1}$. Under our assumption, MW (S) is finitely generated (T. Shioda).

Mordell-Weil group 2

$\dot{+}$: group law on MW (S).
[m]s: the multiplication-by- m map $(m \in \mathbb{Z}$) on $\operatorname{MW}(S)$ for $s \in \operatorname{MW}(S)$.

Given $s_{1}, \ldots, s_{k} \in \operatorname{MW}(S) \Rightarrow \sum_{i}\left[a_{i}\right] s_{i}$ another element of $\operatorname{MW}(S)$, a new curve on S.

- $\mathcal{Q}:=C_{1}+L_{1}+L_{2}$. e.g. $Q:\left(x-t^{2}\right)(x-3 t+2)(x+3 t+2)$
- $f^{\prime \prime}: S^{\prime \prime} \rightarrow \mathbb{P}^{2}$: double cover with the branch locus $\Delta_{f^{\prime \prime}}=\mathcal{Q}$.

$$
\text { e.g. } y^{2}=f(x, t) \text {. }
$$

- x : a general point of C_{1}; and the pencil of lines through x.
- Λ_{x} : the pencil of lines through x; and Λ_{x} gives rise to a pencil of curves of genus $1, \widetilde{\Lambda}_{x}$, on $S^{\prime \prime}$.
- Resolve singularities of $S^{\prime \prime}$ and the base points of $\widetilde{\Lambda}_{x}$; and we denote the obtained surface by S and the resolution map by $\bar{\mu}$.
- $\varphi: S \rightarrow \mathbb{P}^{1}$ is induced by the pencil $\widetilde{\Lambda}_{x}$.

How to obtain B_{1} and B_{2}
How do we obtain C_{2} ?

- L_{3} and L_{4} give rise to sections $s_{L_{3}}^{ \pm}$and $s_{L_{4}}^{ \pm}$on S.
- $\bar{\mu} \circ f^{\prime \prime}\left([2] s_{L_{3}}^{ \pm}\right)$and $\bar{\mu} \circ f^{\prime \prime}\left([2] s_{L_{4}}^{ \pm}\right)$are both smooth conics as in C_{2} (i.e., inscribing $C_{1}+L_{1}+L_{2}$).
- We may assume that $C_{2}=\bar{\mu} \circ f^{\prime \prime}\left([2] s_{L_{3}}^{ \pm}\right)$.

One can see 'difference' between B_{1} and B_{2} in S, not in \mathbb{P}^{2} !

Key Theorem
$s_{1}, s_{2} \in \operatorname{MW}(S)$.
There exists a Galois cover of \mathbb{P}^{2} such that

- the Galois group is isomorphic to $D_{2 p}$,
- the ramification indices along:

$$
C_{1}, L_{1} \text { and } L_{2}=2
$$

$$
\bar{\mu} \circ f^{\prime \prime}\left(s_{i}\right)=p(i=1,2)
$$

$\Leftrightarrow s_{1}$ and s_{2} give linearly dependent elements in $\operatorname{MW}(S) \otimes \mathbb{Z} / p \mathbb{Z}$.

Remark. Key Theorem holds under more general setting.

Theorem follows from Key Theorem immediately as follows:

- $\left\{s_{L_{3}}^{+}, s_{L_{4}}^{+}\right\}$forms a basis of the free part of $\operatorname{MW}(S)$.
- B_{1} : Put $s_{1}=s_{L_{3}}^{+}, s_{2}=[2] s_{L_{3}}^{+}$.

There exists a Galois cover of \mathbb{P}^{2} such that
(i) the Galois group is isomorphic to $D_{2 p}$,
(ii) the ramification indices along

$$
C_{1}, L_{1} \text { and } L_{2}=2
$$

$$
L_{3}, C_{2}=p
$$

B_{2} : Put $s_{1}=s_{L_{4}}^{+}, s_{2}=[2] s_{L_{3}}^{+}$.
There exists no Galois cover of \mathbb{P}^{2} such that
(i) the Galois group is isomorphic to $D_{2 p}$,
(ii) the ramification indices: along C_{1}, L_{1} and $L_{2}=2$; and along $L_{4}, C_{2}=p$.
Rem: 申 $\pi_{1}\left(\mid p^{2}, B_{2},+\right) \rightarrow D_{2 p}$

Thank you!

