On the second nilpotent quotient of higher homotopy groups, for hypersolvable arrangements

Daniela Anca Macinic, "Simion Stoilow" Institute of the Romanian Academy, University of Bucharest

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Let \mathcal{A} be a central, essential arrangement of hyperplanes in an affine complex vector space and let X be its complement in the ambient space.

Denote by L(A) the *intersection lattice*, i.e. the partial ordered set of all intersections of various hyperplanes, ordered by reversed inclusion.

Question: When is a topological invariant of the complement X *combinatorial*, i.e. determined by the combinatorics of the lattice?

The rank of an arrangement, i.e. the codimension of the center of $\ensuremath{\mathcal{A}}$ is combinatorial.

(Rybnikov) $\pi_1(X)$ is not combinatorial.

– generic arrangements: arrangements in \mathbb{C}^{I} such that the hyperplanes in any subarrangement of cardinality I are independent; $\pi_{1}(X)$ is free abelian in $|\mathcal{A}|$ generators (Hattori).

-split-solvable arrangements (Choudary-Dimca-Papadima): arrangements in $P^2\mathbb{C}$ having a very simple combinatorics; only double points except on the line at infinity; the fundamental group is a product of free groups.

-fiber-type (supersolvable) arrangements (Falk-Randell): their complements are at the top of a tower of fibrations, with fibers $\mathbb{C} - \{ finite \ number \ of \ points \}$; the fundamental group of the complement is an iterated almost direct product of free groups

hypersolvable arrangements (Jambu-Papadima): the definition is combinatorial; some conditions on the lattice up to rank 2 are given;

- the hypersolvable class contains all previously described types of arrangements;
- they are generic sections of fiber-type arrangements; any hypersolvable arrangement can be "deformed" to a supersolvable one, without changing the collinearity relations, hence without changing the fundamental group;
- the fundamental group is again an almost direct product of free groups.

Question: How about the higher homotopy groups of the complement?

- not all arrangement complements are $K(\pi, 1)$ spaces;
- inside the hypersolvable class, the property of being K(π, 1) is combinatorial; a hypersolvable arrangement is K(π, 1) iff it is supersolvable;
- extending the results of Hattori on generic arrangements to the hipersolvable class, Papadima-Suciu showed that the higher homotopy groups of the complement vanish up to some combinatorially determined range p;
- π₁(X) acts on the higher homotopy groups; hence π_p(X) has
 a structure of ℤπ₁-module;
- an explicit presentation of the $\pi_p(X)$ as $\mathbb{Z}\pi_1$ -module is given;

Definition A space is called minimal if it has the homotopy type of a connected finite type CW-complex such that the betti number b_k is equal to the number of *k*-cells.

Example Complements of hyperplane arrangements are minimal spaces.

Let $\hat{\mathcal{A}}$ be the supersolvable deformation of the hypersolvable arrangement \mathcal{A} ; then the complement Y of $\hat{\mathcal{A}}$ is $\mathcal{K}(\pi_1(X), 1)$.

Define

$$p(X) := \sup\{q \mid b_r(X; \mathbb{Q}) = b_r(K(\pi_1(X), 1); \mathbb{Q}), \forall r \leq q\}$$

the order of π_1 -connectivity of a space X, having the homotopy type of a connected finite type CW complex.

$$2 \le p \le rank(\mathcal{A}) - 1$$

Theorem (Papadima-Suciu) Let A be a hypersolvable arrangement with complement X, fundamental group π and order of connectivity p. Then:

(1) X aspherical iff ${\cal A}$ supersolvable iff $p=\infty$

(2) If $p < \infty$, then the first non-vanishing higher homotopy group of X is $\pi_p(X)$

 $\operatorname{gr}_{ullet}(\pi_1)\otimes \mathbb{Q}$ is combinatorial

Let *I* be the augmentation ideal of the group ring $\mathbb{Z}\pi_1(X)$ and $\operatorname{gr}_I^{\bullet}\mathbb{Z}\pi_1$ the associated graded ring.

Another natural approach is to approximate the group $\pi_p(X)$ by its nilpotent quotients, $\pi_p/I^q \pi_p$ (for $q \ge 1$), or by the associated graded module over $\operatorname{gr}_I^\bullet \mathbb{Z}\pi_1$, $\operatorname{gr}_I^\bullet \pi_p := \bigoplus_{q\ge 0} (I^q \pi_p/I^{q+1}\pi_p)$. **Theorem** (Dimca-Papadima) When p is maximal, i.e. p = rank(A) - 1, then $gr_I^i \pi_p$ are combinatorially determined finitely generated abelian groups.

In general, $\operatorname{gr}_{I}^{\bullet} \mathbb{Z}\pi_{1}$ and $\operatorname{gr}_{I}^{0} \pi_{p}$ are combinatorially determined. Question: What if we drop the assumption on p?

Theorem (M., Matei, Papadima)The second graded component $gr_I^1 \pi_p = I \pi_p / I^2 \pi_p$ is combinatorially determined and given by an explicit presentation.

Next, we prepare to give some equivalent conditions to the existence of torsion on $\operatorname{gr}_{I}^{1} \pi_{p}$.

Let $\Lambda^{\bullet} := \Lambda^{\bullet}(\mathcal{A})$ be the exterior algebra over \mathbb{Z} generated by the set of hyperplanes of an arbitrary arrangement \mathcal{A} .

Let $\mathcal{I}^{\bullet} := \mathcal{I}^{\bullet}(\mathcal{A}) \subseteq \Lambda^{\bullet}$ be the Orlik-Solomon ideal of \mathcal{A} , and denote by $\Lambda^{\bullet}(\mathcal{A}) = \Lambda/\mathcal{I}$ the Orlik-Solomon algebra over \mathbb{Z} , known to be torsion-free.

A well known result of Orlik and Solomon states that the \mathbb{K} -specialization $A^{\bullet}(\mathcal{A})_{\mathbb{K}}$ is isomorphic to the \mathbb{K} -cohomology ring of the affine complement of \mathcal{A} , for every commutative ring \mathbb{K} .

Let $\Lambda^+ \mathcal{I} \subseteq \mathcal{I}$ be the decomposable Orlik-Solomon ideal.

We introduce $A^{\bullet}_{+}(\mathcal{A}) := \Lambda/\Lambda^{+}\mathcal{I}$, the decomposable Orlik-Solomon algebra.

Is $A^{\bullet}_{+}(\mathcal{A})$ also torsion-free?

Theorem(M., Matei, Papadima) Let \mathcal{A} be a hypersolvable and not supersolvable arrangement, and p the π_1 -connectivity order. Then the following are equivalent:

- 1. The second graded piece, $\operatorname{gr}_{I}^{1} \pi_{p}(X)$, has no torsion.
- 2. The decomposable Orlik-Solomon algebra, $A^{\bullet}_{+}(\mathcal{A})$, is free in degree $\bullet = p + 2$.
- 3. The graded abelian group of indecomposable OS-relations, $(\mathcal{I}/\Lambda^+\mathcal{I})^{\bullet}$ is free in degree $\bullet = p + 2$.

Remark When \mathcal{I} is generated in degree 2, the OS-algebra is called *quadratic*, then $A^{\bullet}_{+}(\mathcal{A})$ has no torsion.

Definition A graphic arrangement is a subarrangement of a braid arrangement. Graphic arrangements can be described in terms of finite simple graphs. Denote by A_{Γ} the arrangement associated to the graph Γ .

Corollary (M., Matei, Papadima) Let \mathcal{A} be a hypersolvable and not supersolvable graphic arrangement. Then $A^{\bullet}_{+}(\mathcal{A})$ is torsion free and the second graded piece, $\operatorname{gr}_{I}^{1} \pi_{p}(X)$, is a finitely generated free abelian group, with rank explicitly computable from the graph Γ .

Examples of arrangements with p non-maximal that fit our description are easy to give, considering the characterisations of supersolvability, respectively hypersolvability in terms of the graph, for graphic arrangements.